Spectrum and multiplier ideals of arbitrary subvarieties
Alexandru Dimca[1]; Philippe Maisonobe[1]; Morihiko Saito[2]
- [1] Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France)
- [2] RIMS Kyoto University Kyoto 606–8502 (Japan)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1633-1653
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDimca, Alexandru, Maisonobe, Philippe, and Saito, Morihiko. "Spectrum and multiplier ideals of arbitrary subvarieties." Annales de l’institut Fourier 61.4 (2011): 1633-1653. <http://eudml.org/doc/219795>.
@article{Dimca2011,
abstract = {We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point is to consider the direct sum of the graded pieces of the multiplier ideals as a module over the algebra defining the normal cone of the subvariety. We also give a combinatorial description in the case of monomial ideals.},
affiliation = {Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France); Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France); RIMS Kyoto University Kyoto 606–8502 (Japan)},
author = {Dimca, Alexandru, Maisonobe, Philippe, Saito, Morihiko},
journal = {Annales de l’institut Fourier},
keywords = {Spectrum; V-filtration; multiplier ideal; spectrum; -filtration; -function},
language = {eng},
number = {4},
pages = {1633-1653},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectrum and multiplier ideals of arbitrary subvarieties},
url = {http://eudml.org/doc/219795},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Dimca, Alexandru
AU - Maisonobe, Philippe
AU - Saito, Morihiko
TI - Spectrum and multiplier ideals of arbitrary subvarieties
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1633
EP - 1653
AB - We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point is to consider the direct sum of the graded pieces of the multiplier ideals as a module over the algebra defining the normal cone of the subvariety. We also give a combinatorial description in the case of monomial ideals.
LA - eng
KW - Spectrum; V-filtration; multiplier ideal; spectrum; -filtration; -function
UR - http://eudml.org/doc/219795
ER -
References
top- A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic -modules, 2 (1987), Academic Press Inc., Boston, MA MR882000
- Nero Budur, On Hodge spectrum and multiplier ideals, Math. Ann. 327 (2003), 257-270 Zbl1035.14010MR2015069
- Nero Budur, Mircea Mustaţǎ, Morihiko Saito, Bernstein-Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), 779-797 Zbl1112.32014MR2231202
- Nero Budur, Mircea Mustaţǎ, Morihiko Saito, Combinatorial description of the roots of the Bernstein-Sato polynomials for monomial ideals, Comm. Algebra 34 (2006), 4103-4117 Zbl1115.32018MR2267574
- Nero Budur, Morihiko Saito, Multiplier ideals, -filtration, and spectrum, J. Algebraic Geom. 14 (2005), 269-282 Zbl1086.14013MR2123230
- P. Deligne, Le formalisme des cycles évanescents, SGA7, exp. XIII and XIV 340 (1973), 82-115 and 116–164., Springer, Berlin Zbl0266.14008
- Pierre Deligne, Théorie de Hodge, I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (1971), 425-430, Gauthier-Villars, Paris Zbl0219.14006MR441965
- A. Dimca, Ph. Maisonobe, M. Saito, T. Torrelli, Multiplier ideals, -filtrations and transversal sections, Math. Ann. 336 (2006), 901-924 Zbl1107.14003MR2255178
- W. Ebeling, J. H. M. Steenbrink, Spectral pairs for isolated complete intersection singularities, J. Algebraic Geom. 7 (1998), 55-76 Zbl0945.14003MR1620686
- Akihiko Gyoja, Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ. 33 (1993), 399-411 Zbl0797.32007MR1231750
- J Howald, Multiplier ideals of sufficiently general polynomials Zbl0979.13026
- J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665-2671 (electronic) Zbl0979.13026MR1828466
- M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) 1016 (1983), 134-142, Springer, Berlin Zbl0566.32022MR726425
- A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31 Zbl0328.32007MR419433
- Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
- B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, 459 (1975), Springer, Berlin Zbl0308.32007MR419827
- B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III 101 (1981), 243-267, Luminy Zbl0528.32007
- A. J. Parameswaran, Monodromy fibration of an isolated complete intersection singularity, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) (1993), 123-134, Hindustan Book Agency, Delhi Zbl0842.32025MR1274498
- C. Sabbah, Proximité évanescente. I. La structure polaire d’un -module. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 62 and 64 (1987), 283-328 and 213–241 Zbl0632.32006MR901394
- Morihiko Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann. 281 (1988), 411-417 Zbl0628.32038MR954149
- Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849-995 (1989) Zbl0691.14007MR1000123
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221-333 Zbl0727.14004MR1047415
- Morihiko Saito, On -function, spectrum and rational singularity, Math. Ann. 295 (1993), 51-74 Zbl0788.32025MR1198841
- Morihiko Saito, Multiplier ideals, -function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), 1050-1068 Zbl1120.32018MR2339839
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
- J. H. M. Steenbrink, The spectrum of hypersurface singularities, Astérisque (1989), 163-184 Zbl0725.14031MR1042806
- J. H. M. Steenbrink, Spectra of -unimodal isolated singularities of complete intersections, Singularity theory (Liverpool, 1996) 263 (1999), xvii, 151-162, Cambridge Univ. Press, Cambridge Zbl0966.14011MR1709350
- Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
- A. N. Varchenko, A. G. Khovanskiĭ, Asymptotic behavior of integrals over vanishing cycles and the Newton polyhedron, Dokl. Akad. Nauk SSSR 283 (1985), 521-525 Zbl0595.32012MR800892
- J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 332-364, Soc. Math. France, Paris Zbl0532.14008MR737938
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.