Spectrum and multiplier ideals of arbitrary subvarieties

Alexandru Dimca[1]; Philippe Maisonobe[1]; Morihiko Saito[2]

  • [1] Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France)
  • [2] RIMS Kyoto University Kyoto 606–8502 (Japan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1633-1653
  • ISSN: 0373-0956

Abstract

top
We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point is to consider the direct sum of the graded pieces of the multiplier ideals as a module over the algebra defining the normal cone of the subvariety. We also give a combinatorial description in the case of monomial ideals.

How to cite

top

Dimca, Alexandru, Maisonobe, Philippe, and Saito, Morihiko. "Spectrum and multiplier ideals of arbitrary subvarieties." Annales de l’institut Fourier 61.4 (2011): 1633-1653. <http://eudml.org/doc/219795>.

@article{Dimca2011,
abstract = {We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point is to consider the direct sum of the graded pieces of the multiplier ideals as a module over the algebra defining the normal cone of the subvariety. We also give a combinatorial description in the case of monomial ideals.},
affiliation = {Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France); Université de Nice-Sophia Antipolis Laboratoire J.A. Dieudonné, UMR du CNRS 6621 Parc Valrose 06108 Nice Cedex 02 (France); RIMS Kyoto University Kyoto 606–8502 (Japan)},
author = {Dimca, Alexandru, Maisonobe, Philippe, Saito, Morihiko},
journal = {Annales de l’institut Fourier},
keywords = {Spectrum; V-filtration; multiplier ideal; spectrum; -filtration; -function},
language = {eng},
number = {4},
pages = {1633-1653},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectrum and multiplier ideals of arbitrary subvarieties},
url = {http://eudml.org/doc/219795},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Dimca, Alexandru
AU - Maisonobe, Philippe
AU - Saito, Morihiko
TI - Spectrum and multiplier ideals of arbitrary subvarieties
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1633
EP - 1653
AB - We introduce a spectrum for arbitrary subvarieties. This generalizes the definition by Steenbrink for hypersurfaces. In the isolated complete intersection singularity case, it coincides with the one given by Ebeling and Steenbrink except for the coefficients of integral exponents. We show a relation to the graded pieces of the multiplier ideals by using the filtration V of Kashiwara and Malgrange. This implies a partial generalization of a theorem of Budur in the hypersurface case. The key point is to consider the direct sum of the graded pieces of the multiplier ideals as a module over the algebra defining the normal cone of the subvariety. We also give a combinatorial description in the case of monomial ideals.
LA - eng
KW - Spectrum; V-filtration; multiplier ideal; spectrum; -filtration; -function
UR - http://eudml.org/doc/219795
ER -

References

top
  1. A. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris MR751966
  2. A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic D -modules, 2 (1987), Academic Press Inc., Boston, MA MR882000
  3. Nero Budur, On Hodge spectrum and multiplier ideals, Math. Ann. 327 (2003), 257-270 Zbl1035.14010MR2015069
  4. Nero Budur, Mircea Mustaţǎ, Morihiko Saito, Bernstein-Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), 779-797 Zbl1112.32014MR2231202
  5. Nero Budur, Mircea Mustaţǎ, Morihiko Saito, Combinatorial description of the roots of the Bernstein-Sato polynomials for monomial ideals, Comm. Algebra 34 (2006), 4103-4117 Zbl1115.32018MR2267574
  6. Nero Budur, Morihiko Saito, Multiplier ideals, V -filtration, and spectrum, J. Algebraic Geom. 14 (2005), 269-282 Zbl1086.14013MR2123230
  7. P. Deligne, Le formalisme des cycles évanescents, SGA7, exp. XIII and XIV 340 (1973), 82-115 and 116–164., Springer, Berlin Zbl0266.14008
  8. Pierre Deligne, Théorie de Hodge, I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (1971), 425-430, Gauthier-Villars, Paris Zbl0219.14006MR441965
  9. A. Dimca, Ph. Maisonobe, M. Saito, T. Torrelli, Multiplier ideals, V -filtrations and transversal sections, Math. Ann. 336 (2006), 901-924 Zbl1107.14003MR2255178
  10. W. Ebeling, J. H. M. Steenbrink, Spectral pairs for isolated complete intersection singularities, J. Algebraic Geom. 7 (1998), 55-76 Zbl0945.14003MR1620686
  11. Akihiko Gyoja, Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ. 33 (1993), 399-411 Zbl0797.32007MR1231750
  12. J Howald, Multiplier ideals of sufficiently general polynomials Zbl0979.13026
  13. J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665-2671 (electronic) Zbl0979.13026MR1828466
  14. M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) 1016 (1983), 134-142, Springer, Berlin Zbl0566.32022MR726425
  15. A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31 Zbl0328.32007MR419433
  16. Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
  17. B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, 459 (1975), Springer, Berlin Zbl0308.32007MR419827
  18. B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III 101 (1981), 243-267, Luminy Zbl0528.32007
  19. A. J. Parameswaran, Monodromy fibration of an isolated complete intersection singularity, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) (1993), 123-134, Hindustan Book Agency, Delhi Zbl0842.32025MR1274498
  20. C. Sabbah, Proximité évanescente. I. La structure polaire d’un D -module. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 62 and 64 (1987), 283-328 and 213–241 Zbl0632.32006MR901394
  21. Morihiko Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann. 281 (1988), 411-417 Zbl0628.32038MR954149
  22. Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849-995 (1989) Zbl0691.14007MR1000123
  23. Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221-333 Zbl0727.14004MR1047415
  24. Morihiko Saito, On b -function, spectrum and rational singularity, Math. Ann. 295 (1993), 51-74 Zbl0788.32025MR1198841
  25. Morihiko Saito, Multiplier ideals, b -function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), 1050-1068 Zbl1120.32018MR2339839
  26. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
  27. J. H. M. Steenbrink, The spectrum of hypersurface singularities, Astérisque (1989), 163-184 Zbl0725.14031MR1042806
  28. J. H. M. Steenbrink, Spectra of K -unimodal isolated singularities of complete intersections, Singularity theory (Liverpool, 1996) 263 (1999), xvii, 151-162, Cambridge Univ. Press, Cambridge Zbl0966.14011MR1709350
  29. Joseph Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
  30. A. N. Varchenko, A. G. Khovanskiĭ, Asymptotic behavior of integrals over vanishing cycles and the Newton polyhedron, Dokl. Akad. Nauk SSSR 283 (1985), 521-525 Zbl0595.32012MR800892
  31. J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, Analysis and topology on singular spaces, II, III (Luminy, 1981) 101 (1983), 332-364, Soc. Math. France, Paris Zbl0532.14008MR737938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.