Finite subschemes of abelian varieties and the Schottky problem
Martin G. Gulbrandsen[1]; Martí Lahoz[2]
- [1] Stord/Haugesund University College, Bjørnsons gate 45 NO-5528 Haugesund (Norway)
- [2] Universitat de Barcelona Departament d’Àlgebra i Geometria Gran Via, 585, 08007 Barcelona (Spain)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2039-2064
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGulbrandsen, Martin G., and Lahoz, Martí. "Finite subschemes of abelian varieties and the Schottky problem." Annales de l’institut Fourier 61.5 (2011): 2039-2064. <http://eudml.org/doc/219804>.
@article{Gulbrandsen2011,
abstract = {The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A, \Theta )$ of dimension $g$, by the existence of $g + 2$ points $\Gamma \subset A$ in special position with respect to $2\Theta $, but general with respect to $\Theta $, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma $.},
affiliation = {Stord/Haugesund University College, Bjørnsons gate 45 NO-5528 Haugesund (Norway); Universitat de Barcelona Departament d’Àlgebra i Geometria Gran Via, 585, 08007 Barcelona (Spain)},
author = {Gulbrandsen, Martin G., Lahoz, Martí},
journal = {Annales de l’institut Fourier},
keywords = {Principally polarized abelian varieties; Jacobians; Schotty problem; finite schemes; Abel-Jacobi curves; principally polarized abelian varieties},
language = {eng},
number = {5},
pages = {2039-2064},
publisher = {Association des Annales de l’institut Fourier},
title = {Finite subschemes of abelian varieties and the Schottky problem},
url = {http://eudml.org/doc/219804},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Gulbrandsen, Martin G.
AU - Lahoz, Martí
TI - Finite subschemes of abelian varieties and the Schottky problem
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2039
EP - 2064
AB - The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A, \Theta )$ of dimension $g$, by the existence of $g + 2$ points $\Gamma \subset A$ in special position with respect to $2\Theta $, but general with respect to $\Theta $, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma $.
LA - eng
KW - Principally polarized abelian varieties; Jacobians; Schotty problem; finite schemes; Abel-Jacobi curves; principally polarized abelian varieties
UR - http://eudml.org/doc/219804
ER -
References
top- C. Birkenhake, H. Lange, Complex abelian varieties, 302 (2004), Springer-Verlag, Berlin Zbl0779.14012MR2062673
- O. Debarre, Fulton-Hansen and Barth-Lefschetz theorems for subvarieties of abelian varieties, J. Reine Angew. Math. 467 (1995), 187-197 Zbl0833.14027MR1355928
- D. Eisenbud, M. Green, J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 295-324 Zbl0871.14024MR1376653
- D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), 15-30 Zbl0804.14002MR1129837
- D. Eisenbud, J. Harris, An intersection bound for rank 1 loci, with applications to Castelnuovo and Clifford theory, J. Algebraic Geom. 1 (1992), 31-60 Zbl0798.14029MR1129838
- P. Griffiths, J. Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), 461-505 Zbl0423.14001MR512429
- S. Grushevsky, Erratum to “Cubic equations for the hyperelliptic locus”, Asian J. Math. 9 (2005), 273-274 Zbl1100.14523MR2176610
- R. C. Gunning, Some curves in abelian varieties, Invent. Math. 66 (1982), 377-389 Zbl0485.14009MR662597
- I. Krichever, Characterizing Jacobians via trisecants of the Kummer Variety, (2006) Zbl1215.14031
- P. Le Barz, Formules pour les trisécantes des surfaces algébriques, Enseign. Math. (2) 33 (1987), 1-66 Zbl0629.14037MR896383
- S. Mukai, Duality between and with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175 Zbl0417.14036MR607081
- D. Mumford, Curves and their Jacobians, (1975), The University of Michigan Press, Ann Arbor, Mich. Zbl0316.14010MR419430
- G. Pareschi, M. Popa, Castelnuovo theory and the geometric Schottky problem, J. Reine Angew. Math. 615 (2008), 25-44 Zbl1142.14030MR2384330
- G. Pareschi, M. Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), 209-222 Zbl1131.14049MR2349774
- Z. Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981), 459-479 Zbl0474.14016MR604839
- G. E. Welters, A criterion for Jacobi varieties, Ann. of Math. (2) 120 (1984), 497-504 Zbl0574.14027MR769160
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.