A result on the integral chow ring of a generic principally polarized complex abelian variety of dimension four
The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties of dimension , by the existence of points in special position with respect to , but general with respect to , and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly...