Torsion and Tamagawa numbers

Dino Lorenzini[1]

  • [1] University of Georgia Department of mathematics Athens, GA 30602 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 1995-2037
  • ISSN: 0373-0956

Abstract

top
Let K be a number field, and let A / K be an abelian variety. Let c denote the product of the Tamagawa numbers of A / K , and let A ( K ) tors denote the finite torsion subgroup of A ( K ) . The quotient c / | A ( K ) tors | is a factor appearing in the leading term of the L -function of A / K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions K / , and for abelian surfaces A / . The smallest possible ratio c / | E ( ) tors | for elliptic curves over is 1 / 5 , achieved only by the modular curve X 1 ( 11 ) .

How to cite

top

Lorenzini, Dino. "Torsion and Tamagawa numbers." Annales de l’institut Fourier 61.5 (2011): 1995-2037. <http://eudml.org/doc/219806>.

@article{Lorenzini2011,
abstract = {Let $K$ be a number field, and let $A/K$ be an abelian variety. Let $c$ denote the product of the Tamagawa numbers of $A/K$, and let $A(K)_\{\textrm\{tors\}\}$ denote the finite torsion subgroup of $A(K)$. The quotient $c/ |A(K)_\{\textrm\{tors\}\}|$ is a factor appearing in the leading term of the $L$-function of $A/K$ in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over $\mathbb\{Q\}$ or quadratic extensions $K/\mathbb\{Q\}$, and for abelian surfaces $A/\mathbb\{Q\}$. The smallest possible ratio $c/ |E(\mathbb\{Q\})_\{\textrm\{tors\}\}|$ for elliptic curves over $\mathbb\{Q\}$ is $1/5$, achieved only by the modular curve $X_1(11)$.},
affiliation = {University of Georgia Department of mathematics Athens, GA 30602 (USA)},
author = {Lorenzini, Dino},
journal = {Annales de l’institut Fourier},
keywords = {Abelian variety over a global field; torsion subgroup; Tamagawa number; elliptic curve; abelian surface; dual abelian variety; Weil restriction},
language = {eng},
number = {5},
pages = {1995-2037},
publisher = {Association des Annales de l’institut Fourier},
title = {Torsion and Tamagawa numbers},
url = {http://eudml.org/doc/219806},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Lorenzini, Dino
TI - Torsion and Tamagawa numbers
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1995
EP - 2037
AB - Let $K$ be a number field, and let $A/K$ be an abelian variety. Let $c$ denote the product of the Tamagawa numbers of $A/K$, and let $A(K)_{\textrm{tors}}$ denote the finite torsion subgroup of $A(K)$. The quotient $c/ |A(K)_{\textrm{tors}}|$ is a factor appearing in the leading term of the $L$-function of $A/K$ in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over $\mathbb{Q}$ or quadratic extensions $K/\mathbb{Q}$, and for abelian surfaces $A/\mathbb{Q}$. The smallest possible ratio $c/ |E(\mathbb{Q})_{\textrm{tors}}|$ for elliptic curves over $\mathbb{Q}$ is $1/5$, achieved only by the modular curve $X_1(11)$.
LA - eng
KW - Abelian variety over a global field; torsion subgroup; Tamagawa number; elliptic curve; abelian surface; dual abelian variety; Weil restriction
UR - http://eudml.org/doc/219806
ER -

References

top
  1. Amod Agashe, William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), 455-484 Zbl1084.11033MR2085902
  2. Arnaud Beauville, Les familles stables de courbes elliptiques sur P 1 admettant quatre fibres singulières, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 657-660 Zbl0504.14016MR664643
  3. Lucile Bégueri, Dualité sur un corps local à corps résiduel algébriquement clos, Mém. Soc. Math. France (N.S.) (1980/81) Zbl0502.14016MR615883
  4. F. Beukers, H. P. Schlickewei, The equation x + y = 1 in finitely generated groups, Acta Arith. 78 (1996), 189-199 Zbl0880.11034MR1424539
  5. Siegfried Bosch, Qing Liu, Rational points of the group of components of a Néron model, Manuscripta Math. 98 (1999), 275-293 Zbl0934.14029MR1717533
  6. Siegfried Bosch, Dino Lorenzini, Grothendieck’s pairing on component groups of Jacobians, Invent. Math. 148 (2002), 353-396 Zbl1061.14042MR1906153
  7. Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
  8. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
  9. A. Brumer, K. Kramer, Paramodular abelian varieties of odd conductor, (2010) Zbl1285.11087
  10. Pete L. Clark, Xavier Xarles, Local bounds for torsion points on abelian varieties, Canad. J. Math. 60 (2008), 532-555 Zbl1204.11090MR2414956
  11. Brian Conrad, Bas Edixhoven, William Stein, J 1 ( p ) has connected fibers, Doc. Math. 8 (2003), 331-408 (electronic) Zbl1101.14311MR2029169
  12. J. E. Cremona, Algorithms for modular elliptic curves, (1997), Cambridge University Press, Cambridge Zbl0758.14042MR1628193
  13. C. Diem, A Study on Theoretical and Practical Aspects of Weil-Restrictions of Varieties Zbl0985.14011
  14. Neil Dummigan, Rational points of order 7, Bull. Lond. Math. Soc. 40 (2008), 1091-1093 Zbl1162.11029MR2471958
  15. Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), 291-306 Zbl0759.14033MR1149171
  16. Bas Edixhoven, Qing Liu, Dino Lorenzini, The p -part of the group of components of a Néron model, J. Algebraic Geom. 5 (1996), 801-813 Zbl0898.14007MR1486989
  17. N. Elkies, Curves of genus 2 over whose Jacobians are absolutely simple abelian surfaces with torsion points of high order 
  18. N. Elkies, Elliptic curves in nature Zbl1166.11335
  19. N. Elkies, Examples of high-order torsion points on simple genus-2 Jacobians 
  20. Matthew Emerton, Optimal quotients of modular Jacobians, Math. Ann. 327 (2003), 429-458 Zbl1061.11018MR2021024
  21. P. Erdös, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425 Zbl0051.27703MR56635
  22. J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), 807-836 Zbl1026.11038MR1923966
  23. E. V. Flynn, Large rational torsion on abelian varieties, J. Number Theory 36 (1990), 257-265 Zbl0757.14025MR1077707
  24. E. V. Flynn, Large rational torsion on abelian varieties, J. Number Theory 36 (1990), 257-265 Zbl0757.14025MR1077707
  25. Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur Z , Invent. Math. 81 (1985), 515-538 Zbl0612.14043MR807070
  26. C. Gonzalez-Aviles, On Néron class group of abelian varieties Zbl1242.14021
  27. Enrique González-Jiménez, Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), 397-418 (electronic) Zbl1081.11042MR1933828
  28. A. Grothendieck, Éléments de géométrie algébrique. Étude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1966-1967) Zbl0144.19904
  29. A. Grothendieck, Groupes de monodromie en géométrie algébrique. I, (1972), Springer-Verlag, Berlin Zbl0237.00013MR354656
  30. Marc Hindry, Joseph H. Silverman, Diophantine geometry, 201 (2000), Springer-Verlag, New York Zbl0948.11023MR1745599
  31. Everett W. Howe, Franck Leprévost, Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), 315-364 Zbl0983.11037MR1748483
  32. S. Kamienny, Torsion points on elliptic curves and q -coefficients of modular forms, Invent. Math. 109 (1992), 221-229 Zbl0773.14016MR1172689
  33. M. A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149 Zbl0647.14020MR931956
  34. D. Krumm, Tamagawa numbers of elliptic curves over cubic fields Zbl06503027
  35. Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), 193-237 Zbl0331.14010MR434947
  36. Boris Kunyavskiĭ, Jean-Jacques Sansuc, Réduction des groupes algébriques commutatifs, J. Math. Soc. Japan 53 (2001), 457-483 Zbl1082.14525MR1815143
  37. Franck Leprévost, Torsion sur des familles de courbes de genre g , Manuscripta Math. 75 (1992), 303-326 Zbl0790.14021MR1167136
  38. Franck Leprévost, Jacobiennes de certaines courbes de genre 2 : torsion et simplicité, J. Théor. Nombres Bordeaux 7 (1995), 283-306 Zbl0864.14017MR1413580
  39. Franck Leprévost, Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genre g 1 , Manuscripta Math. 92 (1997), 47-63 Zbl0872.14016MR1427667
  40. San Ling, On the Q -rational cuspidal subgroup and the component group of J 0 ( p r ) , Israel J. Math. 99 (1997), 29-54 Zbl0934.14022MR1469086
  41. Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), 201-222 Zbl0819.14010MR1202389
  42. Qing Liu, Modèles minimaux des courbes de genre deux, J. Reine Angew. Math. 453 (1994), 137-164 Zbl0805.14013MR1285783
  43. Dino J. Lorenzini, On the group of components of a Néron model, J. Reine Angew. Math. 445 (1993), 109-160 Zbl0781.14029MR1244970
  44. Dino J. Lorenzini, Torsion points on the modular Jacobian J 0 ( N ) , Compositio Math. 96 (1995), 149-172 Zbl0846.14017MR1326710
  45. Dino J. Lorenzini, Models of curves and wild ramification, Pure Appl. Math. Q. 6 (2010), 41-82 Zbl1200.14052MR2591187
  46. Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266 Zbl0245.14015MR444670
  47. Barry Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), 33-186 (1978) Zbl0394.14008MR488287
  48. William G. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), 1093-1124 Zbl0623.14023MR874683
  49. William G. McCallum, On the method of Coleman and Chabauty, Math. Ann. 299 (1994), 565-596 Zbl0824.14017MR1282232
  50. Preda Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167-195 Zbl1067.11017MR2076124
  51. J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190 Zbl0249.14012MR330174
  52. J. S. Milne, Arithmetic duality theorems, (2006), BookSurge, LLC, Charleston, SC Zbl1127.14001MR2261462
  53. Hans H. Müller, Harald Ströher, Horst G. Zimmer, Torsion groups of elliptic curves with integral j -invariant over quadratic fields, J. Reine Angew. Math. 397 (1989), 100-161 Zbl0662.14020MR993219
  54. Naoki Murabayashi, On normal forms of modular curves of genus 2 , Osaka J. Math. 29 (1992), 405-418 Zbl0774.14025MR1173998
  55. T. Nagell, Les points exceptionnels rationnels sur certaines cubiques du premier genre, Acta Arith. 5 (1959), 333-357 Zbl0093.04802MR110667
  56. Yukihiko Namikawa, Kenji Ueno, On fibres in families of curves of genus two. I. Singular fibres of elliptic type, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki (1973), 297-371, Kinokuniya, Tokyo Zbl0268.14004MR384794
  57. Joseph Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p , Invent. Math. 78 (1984), 13-88 Zbl0542.20024MR762353
  58. Hiroyuki Ogawa, Curves of genus 2 with a rational torsion divisor of order 23 , Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 295-298 Zbl0838.14021MR1313182
  59. Frans Oort, Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-119 Zbl0259.14011MR424813
  60. Roger D. Patterson, Alfred J. van der Poorten, Hugh C. Williams, Sequences of Jacobian varieties with torsion divisors of quadratic order, Funct. Approx. Comment. Math. 39 (2008), 345-360 Zbl1188.11034MR2490745
  61. David Penniston, Unipotent groups and curves of genus two, Math. Ann. 317 (2000), 57-78 Zbl1005.14010MR1760669
  62. C. Poor, D. Yuen, Paramodular cusp forms 
  63. Markus A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), 637-658 Zbl0605.14028MR829635
  64. Sage Mathematics Software 
  65. Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, 151 (1994), Springer-Verlag, New York Zbl0911.14015MR1312368
  66. Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106 Zbl0697.14023MR1010156
  67. J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1975), 33-52. Lecture Notes in Math., Vol. 476, Springer, Berlin Zbl1214.14020MR393039
  68. Pavlos Tzermias, Torsion parts of Mordell-Weil groups of Fermat Jacobians, Internat. Math. Res. Notices (1998), 359-369 Zbl0915.11037MR1623406
  69. V. Vatsal, Multiplicative subgroups of J 0 ( N ) and applications to elliptic curves, J. Inst. Math. Jussieu 4 (2005), 281-316 Zbl1158.11323MR2135139
  70. Yifan Yang, Modular units and cuspidal divisor class groups of X 1 ( N ) , J. Algebra 322 (2009), 514-553 Zbl1208.11076MR2529102
  71. Yuri G. Zarhin, Hyperelliptic Jacobians without complex multiplication, Math. Res. Lett. 7 (2000), 123-132 Zbl0959.14013MR1748293

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.