Torsion and Tamagawa numbers
- [1] University of Georgia Department of mathematics Athens, GA 30602 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 1995-2037
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLorenzini, Dino. "Torsion and Tamagawa numbers." Annales de l’institut Fourier 61.5 (2011): 1995-2037. <http://eudml.org/doc/219806>.
@article{Lorenzini2011,
abstract = {Let $K$ be a number field, and let $A/K$ be an abelian variety. Let $c$ denote the product of the Tamagawa numbers of $A/K$, and let $A(K)_\{\textrm\{tors\}\}$ denote the finite torsion subgroup of $A(K)$. The quotient $c/ |A(K)_\{\textrm\{tors\}\}|$ is a factor appearing in the leading term of the $L$-function of $A/K$ in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over $\mathbb\{Q\}$ or quadratic extensions $K/\mathbb\{Q\}$, and for abelian surfaces $A/\mathbb\{Q\}$. The smallest possible ratio $c/ |E(\mathbb\{Q\})_\{\textrm\{tors\}\}|$ for elliptic curves over $\mathbb\{Q\}$ is $1/5$, achieved only by the modular curve $X_1(11)$.},
affiliation = {University of Georgia Department of mathematics Athens, GA 30602 (USA)},
author = {Lorenzini, Dino},
journal = {Annales de l’institut Fourier},
keywords = {Abelian variety over a global field; torsion subgroup; Tamagawa number; elliptic curve; abelian surface; dual abelian variety; Weil restriction},
language = {eng},
number = {5},
pages = {1995-2037},
publisher = {Association des Annales de l’institut Fourier},
title = {Torsion and Tamagawa numbers},
url = {http://eudml.org/doc/219806},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Lorenzini, Dino
TI - Torsion and Tamagawa numbers
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1995
EP - 2037
AB - Let $K$ be a number field, and let $A/K$ be an abelian variety. Let $c$ denote the product of the Tamagawa numbers of $A/K$, and let $A(K)_{\textrm{tors}}$ denote the finite torsion subgroup of $A(K)$. The quotient $c/ |A(K)_{\textrm{tors}}|$ is a factor appearing in the leading term of the $L$-function of $A/K$ in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over $\mathbb{Q}$ or quadratic extensions $K/\mathbb{Q}$, and for abelian surfaces $A/\mathbb{Q}$. The smallest possible ratio $c/ |E(\mathbb{Q})_{\textrm{tors}}|$ for elliptic curves over $\mathbb{Q}$ is $1/5$, achieved only by the modular curve $X_1(11)$.
LA - eng
KW - Abelian variety over a global field; torsion subgroup; Tamagawa number; elliptic curve; abelian surface; dual abelian variety; Weil restriction
UR - http://eudml.org/doc/219806
ER -
References
top- Amod Agashe, William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), 455-484 Zbl1084.11033MR2085902
- Arnaud Beauville, Les familles stables de courbes elliptiques sur admettant quatre fibres singulières, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 657-660 Zbl0504.14016MR664643
- Lucile Bégueri, Dualité sur un corps local à corps résiduel algébriquement clos, Mém. Soc. Math. France (N.S.) (1980/81) Zbl0502.14016MR615883
- F. Beukers, H. P. Schlickewei, The equation in finitely generated groups, Acta Arith. 78 (1996), 189-199 Zbl0880.11034MR1424539
- Siegfried Bosch, Qing Liu, Rational points of the group of components of a Néron model, Manuscripta Math. 98 (1999), 275-293 Zbl0934.14029MR1717533
- Siegfried Bosch, Dino Lorenzini, Grothendieck’s pairing on component groups of Jacobians, Invent. Math. 148 (2002), 353-396 Zbl1061.14042MR1906153
- Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
- Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
- A. Brumer, K. Kramer, Paramodular abelian varieties of odd conductor, (2010) Zbl1285.11087
- Pete L. Clark, Xavier Xarles, Local bounds for torsion points on abelian varieties, Canad. J. Math. 60 (2008), 532-555 Zbl1204.11090MR2414956
- Brian Conrad, Bas Edixhoven, William Stein, has connected fibers, Doc. Math. 8 (2003), 331-408 (electronic) Zbl1101.14311MR2029169
- J. E. Cremona, Algorithms for modular elliptic curves, (1997), Cambridge University Press, Cambridge Zbl0758.14042MR1628193
- C. Diem, A Study on Theoretical and Practical Aspects of Weil-Restrictions of Varieties Zbl0985.14011
- Neil Dummigan, Rational points of order 7, Bull. Lond. Math. Soc. 40 (2008), 1091-1093 Zbl1162.11029MR2471958
- Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), 291-306 Zbl0759.14033MR1149171
- Bas Edixhoven, Qing Liu, Dino Lorenzini, The -part of the group of components of a Néron model, J. Algebraic Geom. 5 (1996), 801-813 Zbl0898.14007MR1486989
- N. Elkies, Curves of genus over whose Jacobians are absolutely simple abelian surfaces with torsion points of high order
- N. Elkies, Elliptic curves in nature Zbl1166.11335
- N. Elkies, Examples of high-order torsion points on simple genus-2 Jacobians
- Matthew Emerton, Optimal quotients of modular Jacobians, Math. Ann. 327 (2003), 429-458 Zbl1061.11018MR2021024
- P. Erdös, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416-425 Zbl0051.27703MR56635
- J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), 807-836 Zbl1026.11038MR1923966
- E. V. Flynn, Large rational torsion on abelian varieties, J. Number Theory 36 (1990), 257-265 Zbl0757.14025MR1077707
- E. V. Flynn, Large rational torsion on abelian varieties, J. Number Theory 36 (1990), 257-265 Zbl0757.14025MR1077707
- Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur , Invent. Math. 81 (1985), 515-538 Zbl0612.14043MR807070
- C. Gonzalez-Aviles, On Néron class group of abelian varieties Zbl1242.14021
- Enrique González-Jiménez, Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), 397-418 (electronic) Zbl1081.11042MR1933828
- A. Grothendieck, Éléments de géométrie algébrique. Étude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1966-1967) Zbl0144.19904
- A. Grothendieck, Groupes de monodromie en géométrie algébrique. I, (1972), Springer-Verlag, Berlin Zbl0237.00013MR354656
- Marc Hindry, Joseph H. Silverman, Diophantine geometry, 201 (2000), Springer-Verlag, New York Zbl0948.11023MR1745599
- Everett W. Howe, Franck Leprévost, Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), 315-364 Zbl0983.11037MR1748483
- S. Kamienny, Torsion points on elliptic curves and -coefficients of modular forms, Invent. Math. 109 (1992), 221-229 Zbl0773.14016MR1172689
- M. A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149 Zbl0647.14020MR931956
- D. Krumm, Tamagawa numbers of elliptic curves over cubic fields Zbl06503027
- Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), 193-237 Zbl0331.14010MR434947
- Boris Kunyavskiĭ, Jean-Jacques Sansuc, Réduction des groupes algébriques commutatifs, J. Math. Soc. Japan 53 (2001), 457-483 Zbl1082.14525MR1815143
- Franck Leprévost, Torsion sur des familles de courbes de genre , Manuscripta Math. 75 (1992), 303-326 Zbl0790.14021MR1167136
- Franck Leprévost, Jacobiennes de certaines courbes de genre : torsion et simplicité, J. Théor. Nombres Bordeaux 7 (1995), 283-306 Zbl0864.14017MR1413580
- Franck Leprévost, Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genre , Manuscripta Math. 92 (1997), 47-63 Zbl0872.14016MR1427667
- San Ling, On the -rational cuspidal subgroup and the component group of , Israel J. Math. 99 (1997), 29-54 Zbl0934.14022MR1469086
- Qing Liu, Courbes stables de genre et leur schéma de modules, Math. Ann. 295 (1993), 201-222 Zbl0819.14010MR1202389
- Qing Liu, Modèles minimaux des courbes de genre deux, J. Reine Angew. Math. 453 (1994), 137-164 Zbl0805.14013MR1285783
- Dino J. Lorenzini, On the group of components of a Néron model, J. Reine Angew. Math. 445 (1993), 109-160 Zbl0781.14029MR1244970
- Dino J. Lorenzini, Torsion points on the modular Jacobian , Compositio Math. 96 (1995), 149-172 Zbl0846.14017MR1326710
- Dino J. Lorenzini, Models of curves and wild ramification, Pure Appl. Math. Q. 6 (2010), 41-82 Zbl1200.14052MR2591187
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266 Zbl0245.14015MR444670
- Barry Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), 33-186 (1978) Zbl0394.14008MR488287
- William G. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), 1093-1124 Zbl0623.14023MR874683
- William G. McCallum, On the method of Coleman and Chabauty, Math. Ann. 299 (1994), 565-596 Zbl0824.14017MR1282232
- Preda Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167-195 Zbl1067.11017MR2076124
- J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190 Zbl0249.14012MR330174
- J. S. Milne, Arithmetic duality theorems, (2006), BookSurge, LLC, Charleston, SC Zbl1127.14001MR2261462
- Hans H. Müller, Harald Ströher, Horst G. Zimmer, Torsion groups of elliptic curves with integral -invariant over quadratic fields, J. Reine Angew. Math. 397 (1989), 100-161 Zbl0662.14020MR993219
- Naoki Murabayashi, On normal forms of modular curves of genus , Osaka J. Math. 29 (1992), 405-418 Zbl0774.14025MR1173998
- T. Nagell, Les points exceptionnels rationnels sur certaines cubiques du premier genre, Acta Arith. 5 (1959), 333-357 Zbl0093.04802MR110667
- Yukihiko Namikawa, Kenji Ueno, On fibres in families of curves of genus two. I. Singular fibres of elliptic type, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki (1973), 297-371, Kinokuniya, Tokyo Zbl0268.14004MR384794
- Joseph Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique , Invent. Math. 78 (1984), 13-88 Zbl0542.20024MR762353
- Hiroyuki Ogawa, Curves of genus with a rational torsion divisor of order , Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 295-298 Zbl0838.14021MR1313182
- Frans Oort, Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-119 Zbl0259.14011MR424813
- Roger D. Patterson, Alfred J. van der Poorten, Hugh C. Williams, Sequences of Jacobian varieties with torsion divisors of quadratic order, Funct. Approx. Comment. Math. 39 (2008), 345-360 Zbl1188.11034MR2490745
- David Penniston, Unipotent groups and curves of genus two, Math. Ann. 317 (2000), 57-78 Zbl1005.14010MR1760669
- C. Poor, D. Yuen, Paramodular cusp forms
- Markus A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), 637-658 Zbl0605.14028MR829635
- Sage Mathematics Software
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, 151 (1994), Springer-Verlag, New York Zbl0911.14015MR1312368
- Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75-106 Zbl0697.14023MR1010156
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1975), 33-52. Lecture Notes in Math., Vol. 476, Springer, Berlin Zbl1214.14020MR393039
- Pavlos Tzermias, Torsion parts of Mordell-Weil groups of Fermat Jacobians, Internat. Math. Res. Notices (1998), 359-369 Zbl0915.11037MR1623406
- V. Vatsal, Multiplicative subgroups of and applications to elliptic curves, J. Inst. Math. Jussieu 4 (2005), 281-316 Zbl1158.11323MR2135139
- Yifan Yang, Modular units and cuspidal divisor class groups of , J. Algebra 322 (2009), 514-553 Zbl1208.11076MR2529102
- Yuri G. Zarhin, Hyperelliptic Jacobians without complex multiplication, Math. Res. Lett. 7 (2000), 123-132 Zbl0959.14013MR1748293
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.