Decompositions of an Abelian surface and quadratic forms
Shouhei Ma[1]
- [1] University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 (Japan)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 717-743
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMa, Shouhei. "Decompositions of an Abelian surface and quadratic forms." Annales de l’institut Fourier 61.2 (2011): 717-743. <http://eudml.org/doc/219812>.
@article{Ma2011,
abstract = {When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 (Japan)},
author = {Ma, Shouhei},
journal = {Annales de l’institut Fourier},
keywords = {Abelian surface; elliptic curve; binary quadratic form; abelian surface; isogeny},
language = {eng},
number = {2},
pages = {717-743},
publisher = {Association des Annales de l’institut Fourier},
title = {Decompositions of an Abelian surface and quadratic forms},
url = {http://eudml.org/doc/219812},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Ma, Shouhei
TI - Decompositions of an Abelian surface and quadratic forms
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 717
EP - 743
AB - When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
LA - eng
KW - Abelian surface; elliptic curve; binary quadratic form; abelian surface; isogeny
UR - http://eudml.org/doc/219812
ER -
References
top- W. L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528 Zbl0154.08602MR216035
- C. Birkenhake, H. Lange, Complex abelian varieties. Second edition, 302 (2004), Springer Zbl1056.14063MR2062673
- J. W. S. Cassels, Rational quadratic forms. London Mathematical Society Monographs, 13 (1978), Academic Press Zbl0395.10029MR522835
- D. A. Cox, Primes of the form , (1989), Wiley-Interscience Zbl0956.11500MR1028322
- T. Hayashida, A class number associated with a product of two elliptic curves, Natur. Sci. Rep. Ochanomizu Univ. 16 (1965), 9-19 Zbl0151.27501MR202715
- S. Hosono, B. H. Lian, K. Oguiso, S.-T. Yau, Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces 38 (2004), 177-192, Amer. Math. Soc., Providence Zbl1076.14045MR2096145
- H. Lange, Principal polarizations on products of elliptic curves, The geometry of Riemann surfaces and abelian varieties 397 (2006), 153-162, Amer. Math. Soc., Providence Zbl1118.14050MR2218006
- J. Lehner, M. Newman, Weierstrass points of , Ann. of Math. (2) 79 (1964), 360-368 Zbl0124.29203MR161841
- H. L. Montgomery, P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529-542 Zbl0285.12004MR357373
- V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177 Zbl0408.10011MR525944
- W. M. Ruppert, When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Z. 203 (1990), 293-299 Zbl0712.14028MR1033438
- T. Shioda, The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo 25 (1978), 47-59 Zbl0405.14021MR480530
- T. Shioda, N. Mitani, Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds 412 (1974), 259-287, Springer Zbl0302.14011MR382289
- H. M. Stark, On complex quadratic fields with class-number two, Math. Comp. 29 (1975), 289-302 Zbl0321.12009MR369313
- D. E. Taylor, The geometry of the classical groups, 9 (1992), Heldermann Verlag Zbl0767.20001MR1189139
- C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298 Zbl0215.39903MR156890
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.