Decompositions of an Abelian surface and quadratic forms

Shouhei Ma[1]

  • [1] University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 (Japan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 2, page 717-743
  • ISSN: 0373-0956

Abstract

top
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.

How to cite

top

Ma, Shouhei. "Decompositions of an Abelian surface and quadratic forms." Annales de l’institut Fourier 61.2 (2011): 717-743. <http://eudml.org/doc/219812>.

@article{Ma2011,
abstract = {When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.},
affiliation = {University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 (Japan)},
author = {Ma, Shouhei},
journal = {Annales de l’institut Fourier},
keywords = {Abelian surface; elliptic curve; binary quadratic form; abelian surface; isogeny},
language = {eng},
number = {2},
pages = {717-743},
publisher = {Association des Annales de l’institut Fourier},
title = {Decompositions of an Abelian surface and quadratic forms},
url = {http://eudml.org/doc/219812},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Ma, Shouhei
TI - Decompositions of an Abelian surface and quadratic forms
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 717
EP - 743
AB - When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
LA - eng
KW - Abelian surface; elliptic curve; binary quadratic form; abelian surface; isogeny
UR - http://eudml.org/doc/219812
ER -

References

top
  1. W. L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528 Zbl0154.08602MR216035
  2. C. Birkenhake, H. Lange, Complex abelian varieties. Second edition, 302 (2004), Springer Zbl1056.14063MR2062673
  3. J. W. S. Cassels, Rational quadratic forms. London Mathematical Society Monographs, 13 (1978), Academic Press Zbl0395.10029MR522835
  4. D. A. Cox, Primes of the form x 2 + n y 2 , (1989), Wiley-Interscience Zbl0956.11500MR1028322
  5. T. Hayashida, A class number associated with a product of two elliptic curves, Natur. Sci. Rep. Ochanomizu Univ. 16 (1965), 9-19 Zbl0151.27501MR202715
  6. S. Hosono, B. H. Lian, K. Oguiso, S.-T. Yau, Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces 38 (2004), 177-192, Amer. Math. Soc., Providence Zbl1076.14045MR2096145
  7. H. Lange, Principal polarizations on products of elliptic curves, The geometry of Riemann surfaces and abelian varieties 397 (2006), 153-162, Amer. Math. Soc., Providence Zbl1118.14050MR2218006
  8. J. Lehner, M. Newman, Weierstrass points of Γ 0 ( n ) , Ann. of Math. (2) 79 (1964), 360-368 Zbl0124.29203MR161841
  9. H. L. Montgomery, P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529-542 Zbl0285.12004MR357373
  10. V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111-177 Zbl0408.10011MR525944
  11. W. M. Ruppert, When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Z. 203 (1990), 293-299 Zbl0712.14028MR1033438
  12. T. Shioda, The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo 25 (1978), 47-59 Zbl0405.14021MR480530
  13. T. Shioda, N. Mitani, Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds 412 (1974), 259-287, Springer Zbl0302.14011MR382289
  14. H. M. Stark, On complex quadratic fields with class-number two, Math. Comp. 29 (1975), 289-302 Zbl0321.12009MR369313
  15. D. E. Taylor, The geometry of the classical groups, 9 (1992), Heldermann Verlag Zbl0767.20001MR1189139
  16. C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298 Zbl0215.39903MR156890

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.