Periodic Jacobi-Perron expansions associated with a unit
Brigitte Adam[1]; Georges Rhin[2]
- [1] 2, rue clos du pré 57530 Courcelles-Chaussy, France
- [2] UMR CNRS 7122 Département de Mathématiques UFR MIM Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 3, page 527-539
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAdam, Brigitte, and Rhin, Georges. "Periodic Jacobi-Perron expansions associated with a unit." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 527-539. <http://eudml.org/doc/219814>.
@article{Adam2011,
abstract = {We prove that, for any unit $\epsilon $ in a real number field $K$ of degree $n+1$, there exits only a finite number of n-tuples in $K^n$ which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for $n=1$. For $n=2$ we give an explicit algorithm to compute all these pairs.},
affiliation = {2, rue clos du pré 57530 Courcelles-Chaussy, France; UMR CNRS 7122 Département de Mathématiques UFR MIM Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France},
author = {Adam, Brigitte, Rhin, Georges},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Jacobi-Perron algorithms},
language = {eng},
month = {11},
number = {3},
pages = {527-539},
publisher = {Société Arithmétique de Bordeaux},
title = {Periodic Jacobi-Perron expansions associated with a unit},
url = {http://eudml.org/doc/219814},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Adam, Brigitte
AU - Rhin, Georges
TI - Periodic Jacobi-Perron expansions associated with a unit
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/11//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 3
SP - 527
EP - 539
AB - We prove that, for any unit $\epsilon $ in a real number field $K$ of degree $n+1$, there exits only a finite number of n-tuples in $K^n$ which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for $n=1$. For $n=2$ we give an explicit algorithm to compute all these pairs.
LA - eng
KW - Jacobi-Perron algorithms
UR - http://eudml.org/doc/219814
ER -
References
top- B. Adam, Voronoï-algorithm expansion of two families with period length going to infinity. Math. of Comp. 64 (1995), no 212, 1687–1704. Zbl0858.11070MR1308446
- B. Adam and G. Rhin, Algorithme des fractions continues et de Jacobi-Perron. Bull. Austral. Math. Soc. 53 (1996), 341–350. Zbl0858.11069MR1381775
- L. Bernstein, The Jacobi-Perron Algorithm, Its Theory and Application. Lecture Notes in Mathematics, 207, Springer-Verlag, Berlin-New York, 1971. Zbl0213.05201MR285478
- L. Bernstein, Einheitenberechnung in kubischen Körpern mittels des Jacobi-Perronschen Algorithmus aus der Rechenanlage. J. Reine Angew. Math. 244 (1970), 201–220. Zbl0205.35301MR271064
- L. Bernstein, A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8. J. of Number Theory 4 (1972), no.1, 48–69. Zbl0244.10006MR294259
- L. Bernstein, On units and fundamental units. J. Reine Angew. Math. 257 (1972), 129–145. Zbl0247.12007MR323755
- H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Maths, 138, Springer Verlag, 2007. Zbl0786.11071MR1228206
- E. Dubois and R. Paysant-Le Roux, Une application des nombres de Pisot à l’algorithme de Jacobi-Perron. Monatschefte für Mathematik 98 (1984), 145–155. Zbl0543.10023MR776351
- E. Dubois, A. Farhane and R. Paysant-Le Roux, The Jacobi-Perron Algorithm and Pisot numbers. Acta Arith. 111 (2004), no 3, 269–275. Zbl1051.11037MR2039226
- J. C. Lagarias, The Quality of the Diophantine Approximations found by the Jacobi-Perron Algorithm and Related Algorithms. Monatschefte für Math. 115 (1993), 299–328. Zbl0790.11059MR1230366
- C. Levesque and G. Rhin, Two Families of Periodic Jacobi Algorithms with Period Lengths Going to Infinity. Jour. of Number Theory 37 (1991), no. 2, 173–180. Zbl0723.11032MR1092604
- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP-Pari version 2.3.4 (2009).
- O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64 (1907), 1–76. Zbl38.0262.01MR1511422
- H. J. Stender, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades. Jour. of Number Theory 7 (1975), no. 2, 235–250. Zbl0308.12001MR369317
- http://www.math.univ-metz.fr/~rhin
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.