Conformal blocks in the tensor product of vector representations and localization formulas
R. Rimányi[1]; A. Varchenko[1]
- [1] Department of Mathematics, University of North Carolina at Chapel Hill, USA
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 1, page 71-97
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topRimányi, R., and Varchenko, A.. "Conformal blocks in the tensor product of vector representations and localization formulas." Annales de la faculté des sciences de Toulouse Mathématiques 20.1 (2011): 71-97. <http://eudml.org/doc/219815>.
@article{Rimányi2011,
abstract = {Using equivariant localization formulas we give a formula for conformal blocks at level one on the sphere as suitable polynomials.},
affiliation = {Department of Mathematics, University of North Carolina at Chapel Hill, USA; Department of Mathematics, University of North Carolina at Chapel Hill, USA},
author = {Rimányi, R., Varchenko, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {conformal blocks; Lie algebras; localizations; divided differences},
language = {eng},
month = {1},
number = {1},
pages = {71-97},
publisher = {Université Paul Sabatier, Toulouse},
title = {Conformal blocks in the tensor product of vector representations and localization formulas},
url = {http://eudml.org/doc/219815},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Rimányi, R.
AU - Varchenko, A.
TI - Conformal blocks in the tensor product of vector representations and localization formulas
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/1//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 1
SP - 71
EP - 97
AB - Using equivariant localization formulas we give a formula for conformal blocks at level one on the sphere as suitable polynomials.
LA - eng
KW - conformal blocks; Lie algebras; localizations; divided differences
UR - http://eudml.org/doc/219815
ER -
References
top- Askey. (R.).— Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal., 11, p. 938-951, (1980). Zbl0458.33002MR595822
- Atiyah (M. F.) Bott (R.).— The moment map and equivariant cohomology. Topology, Vol. 23, Issue 3, p. 1–28, (1984). Zbl0521.58025MR721448
- Feigin (B.), Schechtman (V.), Varchenko (A.).— On algebraic equations satisfied by hypergeometric correlators in WZW models. I, Comm. Math. Phys. 163, p. 173–184, (1994). Zbl0835.17019MR1277938
- Feigin (B.), Schechtman (V.), Varchenko (A.).— On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. in Math. Phys. v. 170, No. 1, p. 219–247; math.hep-th/9407010, (1994). Zbl0842.17043MR1331699
- Felder (G.), Stevens (L.), Varchenko (A.).— Elliptic Selberg integrals and conformal blocks. Math. Res. Lett. 10, no. 5-6, p. 671–684, (2003). Zbl1041.33003MR2024724
- Gusein-Zade (S.), Varchenko (A.).— Verlinde algebras and the intersection form on vanishing cycles. Selecta Math. (N.S.) 3, no. 1, p. 79–97, (1997). Zbl0911.32044MR1454086
- Kazhdan (D.), Lusztig (G.).— Tensor categories arising from affine Lie algebras I-V. J. Amer. Math. Soc., 6, p. 905–947, 1993 ; ibid., p. 949–1011 ; 7, p. 335–381 ; ibid., p. 383–454, (1994). Zbl0786.17017
- Knizhnik (V.G.), Zamolodchikov (A.B.).— Current Algebra and Wess-Zumino Model in Two-Dimensions. Nucl. Phys. B 247, p. 83–103, (1984). Zbl0661.17020MR853258
- Lascoux(A.).— Symmetric Functions and Combinatorial Operations on Polynomials. CMBS 99, AMS, (2003). Zbl1039.05066
- Looijenga (E.), Varchenko (A.).— Unitarity of -conformal blocks in genus zero. arXiv:0810.4310, [v1], p. 1–15.
- Mukhin (E.), Varchenko (A.).— Remarks on critical points of phase functions and norms of Bethe vectors; Arrangements—Tokyo 1998, p. 239–246, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, (2000). Zbl1040.17001MR1796902
- Mukhin (E.), Varchenko (A.).— Norm of a Bethe vector and the Hessian of the master function. Compos. Math. 141, no. 4, p. 1012–1028, (2005). Zbl1072.82012MR2148192
- Opdam (E.).— Some applications of hypergeometric shift operators. Invent. Math. 98, no. 1, 118, (1989). Zbl0696.33006MR1010152
- Ramadas (T. R.).— The “Harder-Narasimhan trace” and unitarity of the KZ/Hitchin connection: genus 0. Ann. of Math. (2) 169, no. 1, p. 1–39, (2009). Zbl1167.32011MR2480600
- Reshetikhin (N.), Varchenko (A.).— Quasiclassical asymptotics of solutions to the KZ equations. Geometry, topology, & physics, p. 293–322, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, (1995). Zbl0867.58065MR1358621
- Rimányi (R.), Schechtman (V.), Varchenko (A.).— Conformal blocks and equivariant cohomology. In preparation.
- Selberg (A.).— Bemerkninger om et multiplet integral. Norsk Mat. Tidsskr. 26, p. 71–78, (1944). Zbl0063.06870MR18287
- Spiridonov (V.).— An elliptic beta integral. New trends in difference equations (Temuco, 2000), p. 273– 282, Taylor and Francis, London, (2002). Zbl1065.33015MR2016068
- Schechtman (V.), Varchenko (A.).— Arrangements of Hyperplanes and Lie Algebra Homology. Invent. Math. Vol. 106, p. 139–194, (1991). Zbl0754.17024MR1123378
- Tarasov (V.), Varchenko (A.).— Selberg-type integrals associated with , Lett. Math. Phys. 65, no. 3, p. 173–185, (2003). Zbl1055.33016MR2033704
- Varchenko (A.).— A Selberg Integral Type Formula for an One-Dimensional Space of Conformal Blocks. arXiv:0810.3355, (2008).
- Warnaar (O.).— A Selberg integral for the Lie algebra , arXiv:0708.1193, p. 1–32. Zbl1243.33053
- Zuber (J.-B.).— Graphs and reflection groups. Comm. Math. Phys. 179, no. 2, p. 265–294, (1996). Zbl0942.20018MR1400741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.