A unification of Knizhnik-Zamalodchikov and Dunkl operators via affine Hecke algebras.
In the first part of the paper we discuss possible definitions of Fock representation of the *-Lie algebra of the Renormalized Higher Powers of White Noise (RHPWN). We propose one definition that avoids the no-go theorems and we show that the vacuum distribution of the analogue of the field operator for the n-th renormalized power of WN defines a continuous binomial process. In the second part of the paper we present without proof our recent results on the central extensions of RHPWN, its subalgebras...
We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus for classical Lie algebras and .
Using equivariant localization formulas we give a formula for conformal blocks at level one on the sphere as suitable polynomials.
Among (conformal) quantum field theories, the rational conformal field theories are singled out by the fact that their correlators can be constructed from a modular tensor category 𝓒 with a distinguished object, a symmetric special Frobenius algebra A in 𝓒, via the so-called TFT-construction. These correlators satisfy in particular all factorization constraints, which involve gluing homomorphisms relating correlators of world sheets of different topology. We review the action...