Retractions onto the Space of Continuous Divergence-free Vector Fields
- [1] Université Paris Sud 11, Département de Mathématiques, 91405 Orsay Cedex
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 4, page 767-779
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Albiac (F.) and Kalton (N. J.).— Topics in Banach Space Theory. Springer-Verlag, New York (2006). Zbl1094.46002MR2192298
- Ambrosio (L.), Fusco (N.) and Pallaro (D.).— Functions of bounded variations and free disconti-nuity problems. Oxford Science Publication (2000). Zbl0957.49001
- Benyamini (Y.) and Lindenstrauss (J.).— Geometric Nonlinear Functional Analysis, volume 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000). Zbl0946.46002MR1727673
- Bourgain (J.) and Brézis (H.).— On the equation div y = f and applications to the control of phases. J. Amer. Math. Soc, 16, p. 393426 (2003). Zbl1075.35006MR1949165
- Evans (L.C.) and Gariepy (R.F.).— Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
- Federer (H.).— Geometric Measure Theory. Springer-Verlag, New York (1971). Zbl0176.00801MR257325
- Godefroy (G.) and Kalton (N.J.).— Lipschitz-free banach spaces. Studia Mathematica, 159 (1), p. 121141 (2003). Zbl1059.46058MR2030906
- De Pauw (T.), Moonens (L.) and Pfeffer (W.F.).— Charges in middle dimensions. J. Math. Pures Appl., 92, p. 86112 (2009). Zbl1166.49039MR2541148
- De Pauw (T.) and Torres (M.).— On the distributional divergence of vector fields vanishing at infinity. Proc. Roy. Soc. Edinburgh, 141A, p. 6576 (2011). Zbl1213.35181MR2773439
- Wojtaszczyk (P.).— Banach Spaces for Analysts. Cambridge University Press (1996). Zbl0724.46012MR1144277