The Mordell–Lang question for endomorphisms of semiabelian varieties
Dragos Ghioca[1]; Thomas Tucker[2]; Michael E. Zieve[3]
- [1] Department of Mathematics University of British Columbia Vancouver, BC V6T 1Z2 Canada
- [2] Department of Mathematics University of Rochester Rochester, NY 14627 USA
- [3] Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109 USA
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 3, page 645-666
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. P. Bell, A generalised Skolem–Mahler–Lech theorem for affine varieties. J. London Math. Soc. (2) 73 (2006), 367–379; corrig. J. London Math. Soc. (2) 78 (2008), 267–272. arXiv: math/0501309. Zbl1147.11020MR2225492
- J. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell–Lang problem for ètale maps. Amer. J. Math. 132 (2010), 1655–1675. Zbl1230.37112MR2766180
- R. L. Benedetto, D. Ghioca, T. J. Tucker and P. Kurlberg (with an Appendix by U. Zannier), A case of the dynamical Mordell–Lang conjecture. To appear in Math. Ann., arXiv: 0712.2344.
- N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3, Springer–Verlag, Berlin, 1998. Zbl0672.22001MR1728312
- L. Denis, Géométrie et suites récurrentes. Bull. Soc. Math. France 122 (1994), 13–27. Zbl0795.14008MR1259107
- G. Faltings, The general case of S. Lang’s theorem. In Barsotti symposium in Algebraic Geometry 175–182, Academic Press, San Diego, 1994. Zbl0823.14009MR1307396
- D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory, 129 (2009), 1392–1403. Zbl1186.14047MR2521481
- D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomial orbits, and a dynamical Mordell–Lang theorem. Invent. Math. 171 (2008), 463–483. Zbl1191.14027MR2367026
- D. Ghioca, T. J. Tucker, and M. E. Zieve, Linear relations between polynomial orbits. To appear in Duke Mat. J. Zbl1267.37043
- S. Iitaka, Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 525–544. Zbl0342.14017MR429884
- —, On logarithmic Kodaira dimension of algebraic varieties. In Complex Analysis and Algebraic Geometry Iwanami Shoten, Tokyo (1977), 175–189. MR569688
- S. Lang, Integral points on curves. Publ. Math. IHES 6 (1960), 27–43. Zbl0112.13402MR130219
- C. Lech, A note on recurring series. Ark. Mat. 2 (1953), 417–421. Zbl0051.27801MR56634
- K. Mahler, Eine arithmetische Eigenshaft der Taylor-Koeffizienten. rationaler Funktionen Proc. Kon. Ned. Akad. Wetensch. 38 (1935), 50–60.
- M. McQuillan, Division points on semi-abelian varieties. Invent. Math. 120 (1995), 143–159. Zbl0848.14022MR1323985
- J. Milne, Abelian varieties. available at www.jmilne.org/math/index.html. Zbl0604.14028
- T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. In Comptes rendus du 8e congrès des mathématiciens scandinaves (1935), 163–188. Zbl0011.39201
- P. Vojta, Integral points on subvarieties of semiabelian varieties. I. Invent. Math. 126 (1996), 133–181. Zbl1011.11040MR1408559