# The Mordell–Lang question for endomorphisms of semiabelian varieties

Dragos Ghioca^{[1]}; Thomas Tucker^{[2]}; Michael E. Zieve^{[3]}

- [1] Department of Mathematics University of British Columbia Vancouver, BC V6T 1Z2 Canada
- [2] Department of Mathematics University of Rochester Rochester, NY 14627 USA
- [3] Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109 USA

Journal de Théorie des Nombres de Bordeaux (2011)

- Volume: 23, Issue: 3, page 645-666
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topGhioca, Dragos, Tucker, Thomas, and Zieve, Michael E.. "The Mordell–Lang question for endomorphisms of semiabelian varieties." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 645-666. <http://eudml.org/doc/219823>.

@article{Ghioca2011,

abstract = {The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang conjecture remains true in this setting if either (1) the semiabelian variety is simple, (2) the semiabelian variety is $A^2$, where $A$ is a one-dimensional semiabelian variety, (3) the subvariety is a connected one-dimensional algebraic subgroup, or (4) each endomorphism has diagonalizable Jacobian at the origin. We also give examples showing that the conclusion fails if we make slight modifications to any of these hypotheses.},

affiliation = {Department of Mathematics University of British Columbia Vancouver, BC V6T 1Z2 Canada; Department of Mathematics University of Rochester Rochester, NY 14627 USA; Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109 USA},

author = {Ghioca, Dragos, Tucker, Thomas, Zieve, Michael E.},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {$p$-adic exponential; Mordell-Lang conjecture; semiabelian varieties; -adic exponential},

language = {eng},

month = {11},

number = {3},

pages = {645-666},

publisher = {Société Arithmétique de Bordeaux},

title = {The Mordell–Lang question for endomorphisms of semiabelian varieties},

url = {http://eudml.org/doc/219823},

volume = {23},

year = {2011},

}

TY - JOUR

AU - Ghioca, Dragos

AU - Tucker, Thomas

AU - Zieve, Michael E.

TI - The Mordell–Lang question for endomorphisms of semiabelian varieties

JO - Journal de Théorie des Nombres de Bordeaux

DA - 2011/11//

PB - Société Arithmétique de Bordeaux

VL - 23

IS - 3

SP - 645

EP - 666

AB - The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang conjecture remains true in this setting if either (1) the semiabelian variety is simple, (2) the semiabelian variety is $A^2$, where $A$ is a one-dimensional semiabelian variety, (3) the subvariety is a connected one-dimensional algebraic subgroup, or (4) each endomorphism has diagonalizable Jacobian at the origin. We also give examples showing that the conclusion fails if we make slight modifications to any of these hypotheses.

LA - eng

KW - $p$-adic exponential; Mordell-Lang conjecture; semiabelian varieties; -adic exponential

UR - http://eudml.org/doc/219823

ER -

## References

top- J. P. Bell, A generalised Skolem–Mahler–Lech theorem for affine varieties. J. London Math. Soc. (2) 73 (2006), 367–379; corrig. J. London Math. Soc. (2) 78 (2008), 267–272. arXiv: math/0501309. Zbl1147.11020MR2225492
- J. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell–Lang problem for ètale maps. Amer. J. Math. 132 (2010), 1655–1675. Zbl1230.37112MR2766180
- R. L. Benedetto, D. Ghioca, T. J. Tucker and P. Kurlberg (with an Appendix by U. Zannier), A case of the dynamical Mordell–Lang conjecture. To appear in Math. Ann., arXiv: 0712.2344.
- N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3, Springer–Verlag, Berlin, 1998. Zbl0672.22001MR1728312
- L. Denis, Géométrie et suites récurrentes. Bull. Soc. Math. France 122 (1994), 13–27. Zbl0795.14008MR1259107
- G. Faltings, The general case of S. Lang’s theorem. In Barsotti symposium in Algebraic Geometry 175–182, Academic Press, San Diego, 1994. Zbl0823.14009MR1307396
- D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory, 129 (2009), 1392–1403. Zbl1186.14047MR2521481
- D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomial orbits, and a dynamical Mordell–Lang theorem. Invent. Math. 171 (2008), 463–483. Zbl1191.14027MR2367026
- D. Ghioca, T. J. Tucker, and M. E. Zieve, Linear relations between polynomial orbits. To appear in Duke Mat. J. Zbl1267.37043
- S. Iitaka, Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 525–544. Zbl0342.14017MR429884
- —, On logarithmic Kodaira dimension of algebraic varieties. In Complex Analysis and Algebraic Geometry Iwanami Shoten, Tokyo (1977), 175–189. MR569688
- S. Lang, Integral points on curves. Publ. Math. IHES 6 (1960), 27–43. Zbl0112.13402MR130219
- C. Lech, A note on recurring series. Ark. Mat. 2 (1953), 417–421. Zbl0051.27801MR56634
- K. Mahler, Eine arithmetische Eigenshaft der Taylor-Koeffizienten. rationaler Funktionen Proc. Kon. Ned. Akad. Wetensch. 38 (1935), 50–60.
- M. McQuillan, Division points on semi-abelian varieties. Invent. Math. 120 (1995), 143–159. Zbl0848.14022MR1323985
- J. Milne, Abelian varieties. available at www.jmilne.org/math/index.html. Zbl0604.14028
- T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. In Comptes rendus du 8e congrès des mathématiciens scandinaves (1935), 163–188. Zbl0011.39201
- P. Vojta, Integral points on subvarieties of semiabelian varieties. I. Invent. Math. 126 (1996), 133–181. Zbl1011.11040MR1408559

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.