A Fixed Point Formula for Action of Tori on Algebraic Varieties.
Let be a proper smooth variety over a field of characteristic and an effective divisor on with multiplicity. We introduce a generalized Albanese variety Alb of of modulus , as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For we give a Hodge theoretic description.
We relate -equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.
Let G be a commutative algebraic group defined over a number field K that is disjoint over K from and satisfies the condition of semistability. Consider a linear form l on the Lie algebra of G with algebraic coefficients and an algebraic point u in a p-adic neighbourhood of the origin with the condition that l does not vanish at u. We give a lower bound for the p-adic absolute value of l(u) which depends up to an effectively computable constant only on the height of the linear form, the height...
Soient une variété de groupe définie sur le corps des nombres algébriques, et un sous-groupe à paramètres de , de dimension algébrique . Nous nous proposons de majorer le rang (sur ) des sous-groupes de dont l’image par est contenue dans le groupe des points algébriques de .E. Bombieri et S. Lang ont déjà obtenu de telles majorations, en supposant que les points de sont très bien distribués : pour , on a pour des variétés linéaires, et pour des variétés abéliennes .Nous...
We provide partial results towards a conjectural generalization of a theorem of Lubotzky-Mozes-Raghunathan for arithmetic groups (over number fields or function fields) that implies, in low dimensions, both polynomial isoperimetric inequalities and finiteness properties. As a tool in our proof, we establish polynomial isoperimetric inequalities and finiteness properties for certain solvable groups that appear as subgroups of parabolic groups in semisimple groups, thus generalizing a theorem of Bux....