An inequality for local unitary Theta correspondence

Z. Gong[1]; L. Grenié[2]

  • [1] Lycée annexe à l’Université Fudan, N.383 Rue Guo Quan, Shanghai, Chine
  • [2] Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine (BG), Italy

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 1, page 167-202
  • ISSN: 0240-2963

Abstract

top
Given a representation π of a local unitary group G and another local unitary group H , either the Theta correspondence provides a representation θ H ( π ) of H or we set θ H ( π ) = 0 . If G is fixed and H varies in a Witt tower, a natural question is: for which H is θ H ( π ) 0 ? For given dimension m there are exactly two isometry classes of unitary spaces that we denote H m ± . For ε { 0 , 1 } let us denote m ε ± ( π ) the minimal m of the same parity of ε such that θ H m ± ( π ) 0 , then we prove that m ε + ( π ) + m ε - ( π ) 2 n + 2 where n is the dimension of π .

How to cite

top

Gong, Z., and Grenié, L.. "An inequality for local unitary Theta correspondence." Annales de la faculté des sciences de Toulouse Mathématiques 20.1 (2011): 167-202. <http://eudml.org/doc/219835>.

@article{Gong2011,
abstract = {Given a representation $\pi $ of a local unitary group $G$ and another local unitary group $H$, either the Theta correspondence provides a representation $\theta _H(\pi )$ of $H$ or we set $\theta _H(\pi )=0$. If $G$ is fixed and $H$ varies in a Witt tower, a natural question is: for which $H$ is $\theta _H(\pi )\ne 0$ ? For given dimension $m$ there are exactly two isometry classes of unitary spaces that we denote $H_m^\pm $. For $\varepsilon \in \lbrace 0,1\rbrace $ let us denote $m_\varepsilon ^\pm (\pi )$ the minimal $m$ of the same parity of $\varepsilon $ such that $\theta _\{H_m^\pm \}(\pi )\ne 0$, then we prove that $m_\varepsilon ^+(\pi )+m_\varepsilon ^-(\pi )\ge 2n+2$ where $n$ is the dimension of $\pi $.},
affiliation = {Lycée annexe à l’Université Fudan, N.383 Rue Guo Quan, Shanghai, Chine; Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine (BG), Italy},
author = {Gong, Z., Grenié, L.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {1},
number = {1},
pages = {167-202},
publisher = {Université Paul Sabatier, Toulouse},
title = {An inequality for local unitary Theta correspondence},
url = {http://eudml.org/doc/219835},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Gong, Z.
AU - Grenié, L.
TI - An inequality for local unitary Theta correspondence
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/1//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 1
SP - 167
EP - 202
AB - Given a representation $\pi $ of a local unitary group $G$ and another local unitary group $H$, either the Theta correspondence provides a representation $\theta _H(\pi )$ of $H$ or we set $\theta _H(\pi )=0$. If $G$ is fixed and $H$ varies in a Witt tower, a natural question is: for which $H$ is $\theta _H(\pi )\ne 0$ ? For given dimension $m$ there are exactly two isometry classes of unitary spaces that we denote $H_m^\pm $. For $\varepsilon \in \lbrace 0,1\rbrace $ let us denote $m_\varepsilon ^\pm (\pi )$ the minimal $m$ of the same parity of $\varepsilon $ such that $\theta _{H_m^\pm }(\pi )\ne 0$, then we prove that $m_\varepsilon ^+(\pi )+m_\varepsilon ^-(\pi )\ge 2n+2$ where $n$ is the dimension of $\pi $.
LA - eng
UR - http://eudml.org/doc/219835
ER -

References

top
  1. Harris (M.).— L -functions and periods of polarized regular motives, Journal für die reine und angewandte Mathematik 483, p. 75-161 (1997). Zbl0859.11032MR1431843
  2. —–, Cohomological automorphic forms on unitary groups. II. Period relations and values of L-functions, Harmonic analysis, group representations, automorphic forms and invariant theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, World Sci. Publ., Hackensack, NJ, p. 89-149 (2007). MR MR2401812 MR2401812
  3. Harris (M.), Kudla (S. S.), and Sweet (W. J.).— Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9, no. 4, p. 941-1004 (1996). MR MR1327161 (96m:11041) Zbl0870.11026MR1327161
  4. Howe (R.).— L 2 duality for stable reductive dual pairs, preprint. 
  5. Kudla (S. S.) and Rallis (S.).— On first occurrence in the local theta correspondence, Automorphic representations, L -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 273-308 (2005). MR MR2192827 (2007d:22028) Zbl1109.22012MR2192827
  6. Kudla (S. S.) and Sweet Jr. (W. J.).— Degenerate principal series representations for U ( n ; n ) , Israel J. Math. 98, p. 253-306 (1997). MR MR1459856 (98h:22021) Zbl0896.22007MR1459856
  7. Kudla (S. S.).— On the local theta-correspondence, Invent. Math. 83, no. 2, p. 229-255 (1986). MR MR818351 (87e:22037) Zbl0583.22010MR818351
  8. —–, Splitting metaplectic covers of dual reductive pairs, Israel Journal of Mathematics 87, p. 361-401 (1994). Zbl0840.22029MR1286835
  9. —–, Notes on the local theta correspondence, Available on Kudla’s home page, http://www.math.utoronto.ca/ssk/castle.pdf, (1996). 
  10. Li (J.S.).— Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428, p. 177-217 (1992). MR MR1166512 (93e:11067) Zbl0749.11032MR1166512
  11. Lapid (E. M.) and Rallis (S.).— On the local factors of representations of classical groups, Automorphic representations, L -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 309-359 (2005). MR MR2192828 (2006j:11071) Zbl1188.11023MR2192828
  12. Moeglin (C.), Vigneras (M.-F.) and Waldspurger (J.-L.).— Correspondance de Howe sur un corps p -adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, (1987). MR1041060
  13. Rallis (S.).— On the Howe duality conjecture, Compositio Math. 51, no. 3, p. 333-399 (1984). MR MR743016 (85g:22034) Zbl0624.22011MR743016
  14. Ranga Rao (R.).— On some explicit formulas in the theory of the Weil representation, Pacific J. Math. 157 (1993), p. 335-371. Zbl0794.58017MR1197062
  15. Waldspurger (J.-L.).— Démonstration d’une conjecture de dualité de Howe dans le cas p -adique, p 2 , Festscrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday (Stephen Gelbart, Roger Howe, and P. Sarnak, eds.), Israel Mathematical Conference Proceedings, vol. 2, The Weizmann science press of Israel, 1990, p. 267-324. MR MR1159105 (93h:22035) Zbl0722.22009MR1159105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.