An inequality for local unitary Theta correspondence
- [1] Lycée annexe à l’Université Fudan, N.383 Rue Guo Quan, Shanghai, Chine
- [2] Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine (BG), Italy
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 1, page 167-202
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGong, Z., and Grenié, L.. "An inequality for local unitary Theta correspondence." Annales de la faculté des sciences de Toulouse Mathématiques 20.1 (2011): 167-202. <http://eudml.org/doc/219835>.
@article{Gong2011,
abstract = {Given a representation $\pi $ of a local unitary group $G$ and another local unitary group $H$, either the Theta correspondence provides a representation $\theta _H(\pi )$ of $H$ or we set $\theta _H(\pi )=0$. If $G$ is fixed and $H$ varies in a Witt tower, a natural question is: for which $H$ is $\theta _H(\pi )\ne 0$ ? For given dimension $m$ there are exactly two isometry classes of unitary spaces that we denote $H_m^\pm $. For $\varepsilon \in \lbrace 0,1\rbrace $ let us denote $m_\varepsilon ^\pm (\pi )$ the minimal $m$ of the same parity of $\varepsilon $ such that $\theta _\{H_m^\pm \}(\pi )\ne 0$, then we prove that $m_\varepsilon ^+(\pi )+m_\varepsilon ^-(\pi )\ge 2n+2$ where $n$ is the dimension of $\pi $.},
affiliation = {Lycée annexe à l’Université Fudan, N.383 Rue Guo Quan, Shanghai, Chine; Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine (BG), Italy},
author = {Gong, Z., Grenié, L.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {1},
number = {1},
pages = {167-202},
publisher = {Université Paul Sabatier, Toulouse},
title = {An inequality for local unitary Theta correspondence},
url = {http://eudml.org/doc/219835},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Gong, Z.
AU - Grenié, L.
TI - An inequality for local unitary Theta correspondence
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/1//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 1
SP - 167
EP - 202
AB - Given a representation $\pi $ of a local unitary group $G$ and another local unitary group $H$, either the Theta correspondence provides a representation $\theta _H(\pi )$ of $H$ or we set $\theta _H(\pi )=0$. If $G$ is fixed and $H$ varies in a Witt tower, a natural question is: for which $H$ is $\theta _H(\pi )\ne 0$ ? For given dimension $m$ there are exactly two isometry classes of unitary spaces that we denote $H_m^\pm $. For $\varepsilon \in \lbrace 0,1\rbrace $ let us denote $m_\varepsilon ^\pm (\pi )$ the minimal $m$ of the same parity of $\varepsilon $ such that $\theta _{H_m^\pm }(\pi )\ne 0$, then we prove that $m_\varepsilon ^+(\pi )+m_\varepsilon ^-(\pi )\ge 2n+2$ where $n$ is the dimension of $\pi $.
LA - eng
UR - http://eudml.org/doc/219835
ER -
References
top- Harris (M.).— -functions and periods of polarized regular motives, Journal für die reine und angewandte Mathematik 483, p. 75-161 (1997). Zbl0859.11032MR1431843
- —–, Cohomological automorphic forms on unitary groups. II. Period relations and values of L-functions, Harmonic analysis, group representations, automorphic forms and invariant theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, World Sci. Publ., Hackensack, NJ, p. 89-149 (2007). MR MR2401812 MR2401812
- Harris (M.), Kudla (S. S.), and Sweet (W. J.).— Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9, no. 4, p. 941-1004 (1996). MR MR1327161 (96m:11041) Zbl0870.11026MR1327161
- Howe (R.).— duality for stable reductive dual pairs, preprint.
- Kudla (S. S.) and Rallis (S.).— On first occurrence in the local theta correspondence, Automorphic representations, -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 273-308 (2005). MR MR2192827 (2007d:22028) Zbl1109.22012MR2192827
- Kudla (S. S.) and Sweet Jr. (W. J.).— Degenerate principal series representations for , Israel J. Math. 98, p. 253-306 (1997). MR MR1459856 (98h:22021) Zbl0896.22007MR1459856
- Kudla (S. S.).— On the local theta-correspondence, Invent. Math. 83, no. 2, p. 229-255 (1986). MR MR818351 (87e:22037) Zbl0583.22010MR818351
- —–, Splitting metaplectic covers of dual reductive pairs, Israel Journal of Mathematics 87, p. 361-401 (1994). Zbl0840.22029MR1286835
- —–, Notes on the local theta correspondence, Available on Kudla’s home page, http://www.math.utoronto.ca/ssk/castle.pdf, (1996).
- Li (J.S.).— Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428, p. 177-217 (1992). MR MR1166512 (93e:11067) Zbl0749.11032MR1166512
- Lapid (E. M.) and Rallis (S.).— On the local factors of representations of classical groups, Automorphic representations, -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 309-359 (2005). MR MR2192828 (2006j:11071) Zbl1188.11023MR2192828
- Moeglin (C.), Vigneras (M.-F.) and Waldspurger (J.-L.).— Correspondance de Howe sur un corps -adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, (1987). MR1041060
- Rallis (S.).— On the Howe duality conjecture, Compositio Math. 51, no. 3, p. 333-399 (1984). MR MR743016 (85g:22034) Zbl0624.22011MR743016
- Ranga Rao (R.).— On some explicit formulas in the theory of the Weil representation, Pacific J. Math. 157 (1993), p. 335-371. Zbl0794.58017MR1197062
- Waldspurger (J.-L.).— Démonstration d’une conjecture de dualité de Howe dans le cas -adique, , Festscrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday (Stephen Gelbart, Roger Howe, and P. Sarnak, eds.), Israel Mathematical Conference Proceedings, vol. 2, The Weizmann science press of Israel, 1990, p. 267-324. MR MR1159105 (93h:22035) Zbl0722.22009MR1159105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.