Tensor product theorem for Hitchin pairs – An algebraic approach
V. Balaji[1]; A.J. Parameswaran[2]
- [1] Chennai Mathematical Institute SIPCOT IT Park Siruseri-603103 (India)
- [2] Kerala School of Mathematics Kozhikode, Kerala and Tata Institute of Fundamental Research School of Mathematics Mumbai-400095 (India)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2361-2403
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBalaji, V., and Parameswaran, A.J.. "Tensor product theorem for Hitchin pairs – An algebraic approach." Annales de l’institut Fourier 61.6 (2011): 2361-2403. <http://eudml.org/doc/219836>.
@article{Balaji2011,
abstract = {We give an algebraic approach to the study of Hitchin pairs and prove the tensor product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over algebraically closed fields of characteristic zero and characteristic $p$, with $p$ satisfying some natural bounds. We also prove the corresponding theorem for polystable Hitchin pairs.},
affiliation = {Chennai Mathematical Institute SIPCOT IT Park Siruseri-603103 (India); Kerala School of Mathematics Kozhikode, Kerala and Tata Institute of Fundamental Research School of Mathematics Mumbai-400095 (India)},
author = {Balaji, V., Parameswaran, A.J.},
journal = {Annales de l’institut Fourier},
keywords = {Higgs semistable Hitchin pairs; Tannaka categories; group schemes; tensor products; Hitchin pairs; semistability; groups schemse},
language = {eng},
number = {6},
pages = {2361-2403},
publisher = {Association des Annales de l’institut Fourier},
title = {Tensor product theorem for Hitchin pairs – An algebraic approach},
url = {http://eudml.org/doc/219836},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Balaji, V.
AU - Parameswaran, A.J.
TI - Tensor product theorem for Hitchin pairs – An algebraic approach
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2361
EP - 2403
AB - We give an algebraic approach to the study of Hitchin pairs and prove the tensor product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over algebraically closed fields of characteristic zero and characteristic $p$, with $p$ satisfying some natural bounds. We also prove the corresponding theorem for polystable Hitchin pairs.
LA - eng
KW - Higgs semistable Hitchin pairs; Tannaka categories; group schemes; tensor products; Hitchin pairs; semistability; groups schemse
UR - http://eudml.org/doc/219836
ER -
References
top- V. Balaji, A. J. Parameswaran, Semistable principal bundles. II. Positive characteristics, Transform. Groups 8 (2003), 3-36 Zbl1084.14013MR1959761
- Peter Bardsley, R. W. Richardson, Étale slices for algebraic transformation groups in characteristic , Proc. London Math. Soc. (3) 51 (1985), 295-317 Zbl0604.14037MR794118
- Alexander Beilinson, Vladimir Drinfeld, Chiral algebras, 51 (2004), American Mathematical Society, Providence, RI Zbl1138.17300MR2058353
- Indranil Biswas, Georg Schumacher, Yang-Mills equation for stable Higgs sheaves, Internat. J. Math. 20 (2009), 541-556 Zbl1169.53017MR2526306
- F. A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 1227-1287 Zbl0439.14002MR522939
- P. Deligne, J. Milne, Tannaka categories, Springer Lecture Notes in Mathematics 900 (1982), 101-228 Zbl0477.14004
- D. Gieseker, On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math. 101 (1979), 77-85 Zbl0431.14005MR527826
- Wim H. Hesselink, Uniform instability in reductive groups, J. Reine Angew. Math. 303/304 (1978), 74-96 Zbl0386.20020MR514673
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
- Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114 Zbl0627.14024MR885778
- S. Ilangovan, V. B. Mehta, A. J. Parameswaran, Semistability and semisimplicity in representations of low height in positive characteristic, A tribute to C. S. Seshadri (Chennai, 2002) (2003), 271-282, Birkhäuser, Basel Zbl1067.20061MR2017588
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), 299-316 Zbl0406.14031MR506989
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, 31 (1984), Princeton University Press, Princeton, NJ Zbl0553.14020MR766741
- Y. Laszlo, C. Pauly, The action of the Frobenius maps on rank vector bundles in characteristic , J. Algebraic Geom. 11 (2002), 219-243 Zbl1080.14527MR1874113
- V. B. Mehta, A. J. Parameswaran, Geometry of low height representations, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) 16 (2002), 417-426, Tata Inst. Fund. Res., Bombay Zbl1060.20039MR1940675
- Vikram Bhagvandas Mehta, Representations of algebraic groups and principal bundles on algebraic varieties, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (2002), 629-635, Higher Ed. Press, Beijing Zbl1007.22020MR1957070
- J.S. Milne, Semisimple Lie algebras, algebraic groups, and tensor categories, (2007)
- Bao Châu Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), 399-453 Zbl1098.14023MR2218781
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73-122 Zbl0586.14006MR682517
- S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. (2) 36 (1984), 269-291 Zbl0567.14027MR742599
- A. Ramanathan, Stable principal bundles on a compact Riemann surface - Construction of moduli space, (1976) MR369747
- G. Rousseau, Instabilité dans les fibrés vectoriels (d’après Bogomolov), Algebraic surfaces (Orsay, 1976–78) 868 (1981), 277-292, Springer, Berlin Zbl0477.14012
- Jean-Pierre Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), 513-530 Zbl0816.20014MR1253203
- Jean-Pierre Serre, Moursund Lectures, (1998)
- Jean-Pierre Serre, Complète réductibilité, Astérisque (2005), 195-217 Zbl1156.20313MR2167207
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), 5-95 Zbl0814.32003MR1179076
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), 47-129 Zbl0891.14005MR1307297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.