The diffeomorphism group of a Lie foliation
Gilbert Hector[1]; Enrique Macías-Virgós[2]; Antonio Sotelo-Armesto[2]
- [1] Université Claude Bernard Lyon 1 Institut Camille Jordan 69622 Villeurbanne (France)
- [2] Universidade de Santiago de Compostela Facultade de Matemáticas Dpto. Xeometria e Topoloxia 15782-Santiago de Compostela (Spain)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 365-378
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHector, Gilbert, Macías-Virgós, Enrique, and Sotelo-Armesto, Antonio. "The diffeomorphism group of a Lie foliation." Annales de l’institut Fourier 61.1 (2011): 365-378. <http://eudml.org/doc/219837>.
@article{Hector2011,
abstract = {We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus $T^n$, $n\ge 2$. We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are $\pm \mathrm\{Id\}$ and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for $T^2$, P. Iglesias and G. Lachaud for codimension one foliations on $T^n$, $n\ge 2$, and B. Herrera for transcendent foliations. The theoretical setting of the paper is that of J. M. Souriau’s diffeological spaces.},
affiliation = {Université Claude Bernard Lyon 1 Institut Camille Jordan 69622 Villeurbanne (France); Universidade de Santiago de Compostela Facultade de Matemáticas Dpto. Xeometria e Topoloxia 15782-Santiago de Compostela (Spain); Universidade de Santiago de Compostela Facultade de Matemáticas Dpto. Xeometria e Topoloxia 15782-Santiago de Compostela (Spain)},
author = {Hector, Gilbert, Macías-Virgós, Enrique, Sotelo-Armesto, Antonio},
journal = {Annales de l’institut Fourier},
keywords = {Diffeological space; diffeomorphism group; Lie foliation; linear flow; diffeological space},
language = {eng},
number = {1},
pages = {365-378},
publisher = {Association des Annales de l’institut Fourier},
title = {The diffeomorphism group of a Lie foliation},
url = {http://eudml.org/doc/219837},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Hector, Gilbert
AU - Macías-Virgós, Enrique
AU - Sotelo-Armesto, Antonio
TI - The diffeomorphism group of a Lie foliation
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 365
EP - 378
AB - We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus $T^n$, $n\ge 2$. We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are $\pm \mathrm{Id}$ and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for $T^2$, P. Iglesias and G. Lachaud for codimension one foliations on $T^n$, $n\ge 2$, and B. Herrera for transcendent foliations. The theoretical setting of the paper is that of J. M. Souriau’s diffeological spaces.
LA - eng
KW - Diffeological space; diffeomorphism group; Lie foliation; linear flow; diffeological space
UR - http://eudml.org/doc/219837
ER -
References
top- P. Caron, Y. Carrière, Flots transversalement de Lie , flots transversalement de Lie minimaux, C. R. Acad. Sci., Paris, Sér. A 291 (1980), 477-478 Zbl0453.57019MR595919
- P. Donato, P. Iglesias, Exemples de groupes difféologiques: flots irrationels sur le tore, C. R. Acad. Sci., Paris, Sér. I 301 (1985), 127-130 Zbl0596.58010MR799609
- E. Fédida, Sur les feuilletages de Lie, C. R. Acad. Sci., Paris, Sér. A 272 (1971), 999-1001 Zbl0218.57014MR285025
- E. Fédida, Feuilletages de Lie, feuilletages du plan, (1973) Zbl0218.57014
- A. Haefliger, Groupoïdes d’holonomie et classifiants., Structure transverse des feuilletages, Toulouse 1982 (1984), 70-97, Astérisque 116 Zbl0562.57012MR755163
- G. Hector, Géométrie et topologie des espaces difféologiques, Analysis and geometry in foliated manifolds. Proc. VII Int. Coll. Diff. Geom., Santiago de Compostela, Spain, July 26-30 1994 (1995), 55-80, World Scientific, Singapore Zbl0993.58500MR1414196
- G. Hector, E. Macías, Diffeological groups, Recent advances in Lie theory. Selected contributions to the 1st colloquium on Lie theory and applications, Vigo, Spain, July 17-22, 2000 25 (2002), 247-260, Lemgo: Heldermann Verlag Zbl1018.58001MR1937968
- B. Herrera, M. Llabrés, A. Reventós, Transverse structure of Lie foliations, J. Math. Soc. Japan 48 (1996), 769-795 Zbl0881.57025MR1404823
- B. Herrera Gómez, Sobre la estructura transversa de las foliaciones de Lie, (1994) MR2715023
- P. Iglesias, Fibrations difféologiques et homotopie, (1985)
- P. Iglesias, G. Lachaud, Espaces différentiables singuliers et corps de nombres algébriques, Ann. Inst. Fourier Grenoble 40 (1990), 723-737 Zbl0703.57017MR1091840
- P. Iglesias-Zemmour, Diffeology, (2009)
- E. Macías-Virgós, Homotopy groups in Lie foliations, Trans. Am. Math. Soc. 344 (1994), 701-711 Zbl0818.57016MR1260205
- P. Molino, Riemannian foliations, (1988), Birkhauser Zbl0633.53001MR932463
- J.-M. Souriau, Groupes différentiels, Differential geometrical methods in mathematical physics (Proc. Conf. Aix-en-Provence Salamanca, 1979). Lecture Notes in Math. 836 (1980), 91-128, Springer Zbl0501.58010MR607688
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.