Equations of some wonderful compactifications
- [1] Université de Versailles–Saint-Quentin en Yvelines Département de Mathématiques Bâtiment Fermat 45, avenue des État-Unis 78035 VERSAILLES cedex (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2121-2138
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHivert, Pascal. "Equations of some wonderful compactifications." Annales de l’institut Fourier 61.5 (2011): 2121-2138. <http://eudml.org/doc/219840>.
@article{Hivert2011,
abstract = {De Concini and Procesi have defined the wonderful compactification $\bar\{X\}$ of a symmetric space $X=G/G^\sigma $ where $G$ is a complex semisimple adjoint group and $G^\sigma $ the subgroup of fixed points of $G$ by an involution $\sigma $. It is a closed subvariety of a Grassmannian of the Lie algebra $\mathfrak\{g\}$ of $G$. In this paper we prove that, when the rank of $X$ is equal to the rank of $G$, the variety is defined by linear equations. The set of equations expresses the fact that the invariant alternate trilinear form $w$ on $\mathfrak\{g\}$ vanishes on the $(-1)$-eigenspace of $\sigma $.},
affiliation = {Université de Versailles–Saint-Quentin en Yvelines Département de Mathématiques Bâtiment Fermat 45, avenue des État-Unis 78035 VERSAILLES cedex (France)},
author = {Hivert, Pascal},
journal = {Annales de l’institut Fourier},
keywords = {Wonderful compactification; symmetric space; Lie algebra; adjoint group; scheme; wonderful compactification},
language = {eng},
number = {5},
pages = {2121-2138},
publisher = {Association des Annales de l’institut Fourier},
title = {Equations of some wonderful compactifications},
url = {http://eudml.org/doc/219840},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Hivert, Pascal
TI - Equations of some wonderful compactifications
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2121
EP - 2138
AB - De Concini and Procesi have defined the wonderful compactification $\bar{X}$ of a symmetric space $X=G/G^\sigma $ where $G$ is a complex semisimple adjoint group and $G^\sigma $ the subgroup of fixed points of $G$ by an involution $\sigma $. It is a closed subvariety of a Grassmannian of the Lie algebra $\mathfrak{g}$ of $G$. In this paper we prove that, when the rank of $X$ is equal to the rank of $G$, the variety is defined by linear equations. The set of equations expresses the fact that the invariant alternate trilinear form $w$ on $\mathfrak{g}$ vanishes on the $(-1)$-eigenspace of $\sigma $.
LA - eng
KW - Wonderful compactification; symmetric space; Lie algebra; adjoint group; scheme; wonderful compactification
UR - http://eudml.org/doc/219840
ER -
References
top- Nicolas Bourbaki, Groupes et algèbres de Lie. Chapitres 7–8, (1990), Masson, Paris Zbl0483.22001
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) 996 (1983), 1-44, Springer, Berlin Zbl0581.14041
- Jan Draisma, Hanspeter Kraft, Jochen Kuttler, Nilpotent subspaces of maximal dimension in semi-simple Lie algebras, Compos. Math. 142 (2006), 464-476 Zbl1163.17011MR2218906
- William Fulton, Joe Harris, Representation theory, 129 (1991), Springer-Verlag, New York Zbl0744.22001MR1153249
- D. Garfinkle, A new construction of the Joseph ideal, (1982)
- Michael Thaddeus, Complete collineations revisited, Math. Ann. 315 (1999), 469-495 Zbl0986.14030MR1725990
- M. A. A. van Leeuwen, A. M. Cohen, B. Lisser, LiE, A Package for Lie Group Computations, (1992)
- È. B. Vinberg, V. V. Gorbatsevich, A. L. Onishchik, Structure of Lie groups and Lie algebras, Current problems in mathematics. Fundamental directions, Vol. 41 (Russian) (1990), 5-259, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow Zbl0733.22003MR1056486
- Jerzy Weyman, Cohomology of vector bundles and syzygies, 149 (2003), Cambridge University Press, Cambridge Zbl1075.13007MR1988690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.