A classification of multiplicity free representations.
L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base de (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base de définie par Kostant et Kumar dans...
Pour un anneau local l’homologie du groupe discret a un comportement tout à fait analogue à l’homologie de l’algèbre de Lie lorsque est une algèbre associative sur un corps de caractéristique zéro. L’objet de cet article est de faire une synthèse (sans démonstration) des résultats connus sur ces groupes d’homologie en exhibant leurs liens avec la -théorie algébrique, l’homologie cyclique et la cohomologie motivique. On y pose un certain nombre de questions et on propose une définition pour...
Nous étudions le cône nilpotent impair des super algèbres de Lie orthosymplectiques. Nous nous intéressons aux orbites nilpotentes impaires qui le constituent, à la relation d’ordre sur leurs adhérences et donnons une désingularisation de ce cône .
Let be an arbitrary commutative ring with identity, the general linear Lie algebra over , the diagonal subalgebra of . In case 2 is a unit of , all subalgebras of containing are determined and their derivations are given. In case 2 is not a unit partial results are given.
La première partie de cet article est une adaptation au cadre des super groupes d’un théorème dû à Cartier qui assure que les groupes formels sont lisses en caractéristique zéro. La seconde partie donne une description des super groupes de Lie dits “vraiment classiques” comme groupes d’automorphismes de super algèbres semi-simples associatives à involution, selon une méthode de Weil.
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four -, -, -, and -dimensional algebras of the studied family, respectively, over the field . Over , eight and twenty-two - and -dimensional Lie algebras, respectively, are also found. Finally,...
De Concini and Procesi have defined the wonderful compactification of a symmetric space where is a complex semisimple adjoint group and the subgroup of fixed points of by an involution . It is a closed subvariety of a Grassmannian of the Lie algebra of . In this paper we prove that, when the rank of is equal to the rank of , the variety is defined by linear equations. The set of equations expresses the fact that the invariant alternate trilinear form on vanishes on the -eigenspace...