On Levi-flat hypersurfaces tangent to holomorphic webs
- [1] Departamento de Matemática, UFMG, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 – Belo Horizonte – MG, Brazil.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 3, page 581-597
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topFernández-Pérez, Arturo. "On Levi-flat hypersurfaces tangent to holomorphic webs." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 581-597. <http://eudml.org/doc/219843>.
@article{Fernández2011,
abstract = {We investigate real analytic Levi-flat hypersurfaces tangent to holomorphic webs. We introduce the notion of first integrals for local webs. In particular, we prove that a $k$-web with finitely many invariant subvarieties through the origin tangent to a Levi-flat hypersurface has a holomorphic first integral.},
affiliation = {Departamento de Matemática, UFMG, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 – Belo Horizonte – MG, Brazil.},
author = {Fernández-Pérez, Arturo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Levi-flat hypersurfaces; first integrals; local webs},
language = {eng},
month = {7},
number = {3},
pages = {581-597},
publisher = {Université Paul Sabatier, Toulouse},
title = {On Levi-flat hypersurfaces tangent to holomorphic webs},
url = {http://eudml.org/doc/219843},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Fernández-Pérez, Arturo
TI - On Levi-flat hypersurfaces tangent to holomorphic webs
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 581
EP - 597
AB - We investigate real analytic Levi-flat hypersurfaces tangent to holomorphic webs. We introduce the notion of first integrals for local webs. In particular, we prove that a $k$-web with finitely many invariant subvarieties through the origin tangent to a Levi-flat hypersurface has a holomorphic first integral.
LA - eng
KW - Levi-flat hypersurfaces; first integrals; local webs
UR - http://eudml.org/doc/219843
ER -
References
top- Burns (D.), Gong (X.).— Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121, p. 23-53 . Zbl0931.32009MR1704996
- Brunella (M.).— Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, no. 4, p. 661-672 (2007). Zbl1214.32012MR2394414
- Cavalier (V.), Lehmann (D.).— Introduction à l’étude globale des tissus sur une surface holomorphe. Ann. Inst. Fourier (Grenoble) 57, no. 4, p. 1095-1133 (2007). Zbl1129.14015MR2339328
- Cavalier (V), Lehmann (D.).— Global structure of holomorphic webs on surfaces. Geometry and topology of caustics-CAUSTICS ’06, 35-44, Banach Center Publ., 82, Polish Acad. Sci. Inst. Math., Warsaw (2008). Zbl1149.14300MR2463596
- Cerveau (D.), Lins Neto (A.).— Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation, To appear in Amer. J. Math. Zbl1225.32038
- Fernández-Pérez (A.).— On normal forms of singular Levi-flat real analytic hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 42, no. 1, p. 75-85 (2011). Zbl1215.32016MR2774175
- Fernández-Pérez (A.).— Singular Levi-flat hypersurfaces. An approach through holomorphic foliations. Ph.D Thesis IMPA, Brazil (2010).
- Gunning (R.).— Introduction to holomorphic functions of several variables. Vol. II. Local theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1990). MR1057177
- Lebl (J.).— Singularities and complexity in CR geometry. Ph.D. Thesis, University of California at San Diego, Spring (2007). MR2709940
- Loray (F.).— Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. ; http://hal.archives-ouvertures.fr/ccsd-00016434
- Mattei (J.F.), Moussu (R.).— Holonomie et intégrales premières, Ann. Ec. Norm. Sup. 13, p. 469-523 . Zbl0458.32005MR608290
- Pereira (J.V.), Pirio (L.).— An invitation to web geometry. From Abel’s addition theorem to the algebraization of codimension one webs. Publicações Matemáticas do IMPA. Rio de Janeiro (2009). Zbl1184.53002MR2536234
- Seidenberg (A.).— Reduction of singularities of the differential equation . Amer. J. Math. 90, p. 248-269 . Zbl0159.33303MR220710
- Yartey (J.N.A).— Number of singularities of a generic web on the complex projective plane. J. Dyn. Control Syst. 11, no. 2, p. 281-296 (2005). Zbl1066.37032MR2131813
- Siu (Y.T.).— Techniques of extension of analytic objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York (1974). Zbl0294.32007MR361154
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.