Semi-classical functional calculus on manifolds with ends and weighted estimates
- [1] Université Paul Sabatier - IMT UMR CNRS 5219 31062 Toulouse Cedex 9 (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 1181-1223
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBouclet, Jean-Marc. "Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates." Annales de l’institut Fourier 61.3 (2011): 1181-1223. <http://eudml.org/doc/219846>.
@article{Bouclet2011,
abstract = {For a class of non compact Riemannian manifolds with ends, we give semi-classical expansions of bounded functions of the Laplacian. We then study related $L^p$ boundedness properties of these operators and show in particular that, although they are not bounded on $L^p$ in general, they are always bounded on suitable weighted $L^p$ spaces.},
affiliation = {Université Paul Sabatier - IMT UMR CNRS 5219 31062 Toulouse Cedex 9 (France)},
author = {Bouclet, Jean-Marc},
journal = {Annales de l’institut Fourier},
keywords = {Manifold with ends; $L^p$ estimates; $h$-pseudodifferential operators; manifold with ends; estimates; -pseudodifferential operators},
language = {eng},
number = {3},
pages = {1181-1223},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates},
url = {http://eudml.org/doc/219846},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Bouclet, Jean-Marc
TI - Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1181
EP - 1223
AB - For a class of non compact Riemannian manifolds with ends, we give semi-classical expansions of bounded functions of the Laplacian. We then study related $L^p$ boundedness properties of these operators and show in particular that, although they are not bounded on $L^p$ in general, they are always bounded on suitable weighted $L^p$ spaces.
LA - eng
KW - Manifold with ends; $L^p$ estimates; $h$-pseudodifferential operators; manifold with ends; estimates; -pseudodifferential operators
UR - http://eudml.org/doc/219846
ER -
References
top- B. Ammann, R. Lauter, V. Nistor, A. Vasy, Complex powers and non compact manifolds, Comm. PDE 29 (2004), 671-705 Zbl1071.58022MR2059145
- R. Beals, Characterization of pseudo-differential operators and applications, Duke Math. J. 44 (1977), 45-57 Zbl0353.35088MR435933
- J. M. Bony, Caractérisation des opérateurs pseudo-différentiels, (1996-1997), Séminaire X-EDP, exp. XXIII Zbl1061.35531MR1482829
- J. M. Bouclet, Strichartz estimates on asymptotically hyperbolic manifolds Zbl1230.35027MR2783305
- J. M. Bouclet, Littlewood-Paley decompositions on manifolds with ends, Bulletin de la SMF 138, fascicule 1 (2010), 1-37 Zbl1198.42013MR2638890
- J. M. Bouclet, N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math. 129 (2007), 1565-1609 Zbl1154.35077MR2369889
- N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the non linear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605 Zbl1067.58027MR2058384
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- J. L. Clerc, E. M. Stein, -multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912 Zbl0296.43004MR367561
- E. B. Davies, Spectral theory and differential operators, (1995), Cambridge University Press Zbl0893.47004MR1349825
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
- G. Grubb, Functionnal calculus of pseudo-differential boundary problems, 65 (1986), Birkhäuser, Boston Zbl0622.35001
- A. Hassel, T. Tao, J. Wunsch, A Strichartz inequality for the Schrödinger equation on non-trapping asymptotically conic manifolds, Comm. PDE 30 (2004), 157-205 Zbl1068.35119MR2131050
- B. Helffer, D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Analysis 53 (1983), 246-268 Zbl0524.35103MR724029
- Y. A. Kordyukov, estimates for functions of elliptic operators on manifolds of bounded geometry, Russian J. Math. Phys. 7 (2000), 216-229 Zbl1065.58021MR1836640
- R. B. Melrose, Geometric scattering theory, (1995), Cambridge Univ. Press Zbl0849.58071MR1350074
- D. Robert, Autour de l’approximation semi-classique, 68 (1987), Birkhaüser Zbl0621.35001MR897108
- B. W. Schulze, Pseudo-differential operators on manifolds with singularities, (1991), North-Holland, Amsterdam Zbl0747.58003MR1142574
- R. T. Seeley, Complex powers of an elliptic operator, Proc. Symp. in Pure Math. 10 (1967), 288-307 Zbl0159.15504MR237943
- R. T. Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math. 91 (1969), 889-920 Zbl0191.11801MR265764
- E.M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Zbl0207.13501MR290095
- M. Taylor, estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793 Zbl0691.58043MR1016445
- M. Taylor, Partial Differential Equations II, Linear Equations, 116 (1996), Springer Zbl0869.35003MR1395149
- M. Taylor, Partial Differential Equations III, Nonlinear Equations, 117 (1996), Springer Zbl1206.35004MR1477408
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.