Littlewood-Paley decompositions on manifolds with ends

Jean-Marc Bouclet

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 1, page 1-37
  • ISSN: 0037-9484

Abstract

top
For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) L p spaces, using the usual square function defined by a dyadic partition.

How to cite

top

Bouclet, Jean-Marc. "Littlewood-Paley decompositions on manifolds with ends." Bulletin de la Société Mathématique de France 138.1 (2010): 1-37. <http://eudml.org/doc/272500>.

@article{Bouclet2010,
abstract = {For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) $ L^p $ spaces, using the usual square function defined by a dyadic partition.},
author = {Bouclet, Jean-Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Littlewood-Paley decomposition; square function; manifolds with ends; semiclassical analysis},
language = {eng},
number = {1},
pages = {1-37},
publisher = {Société mathématique de France},
title = {Littlewood-Paley decompositions on manifolds with ends},
url = {http://eudml.org/doc/272500},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Bouclet, Jean-Marc
TI - Littlewood-Paley decompositions on manifolds with ends
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 1
SP - 1
EP - 37
AB - For certain non compact Riemannian manifolds with ends which may or may not satisfy the doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates on (weighted) $ L^p $ spaces, using the usual square function defined by a dyadic partition.
LA - eng
KW - Littlewood-Paley decomposition; square function; manifolds with ends; semiclassical analysis
UR - http://eudml.org/doc/272500
ER -

References

top
  1. [1] J.-M. Bouclet – « Semi-classical functional calculus on manifolds with ends and weighted L p estimates », to appear in Ann. Inst. Fourier. Zbl1236.58033MR2918727
  2. [2] —, « Strichartz estimates on asymptotically hyperbolic manifolds », to appear in Analysis & PDE. Zbl1230.35027
  3. [3] J.-M. Bouclet & N. Tzvetkov – « Strichartz estimates for long range perturbations », Amer. J. Math.129 (2007), p. 1565–1609. Zbl1154.35077MR2369889
  4. [4] —, « On global Strichartz estimates for non-trapping metrics », J. Funct. Anal.254 (2008), p. 1661–1682. Zbl1168.35005MR2396017
  5. [5] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
  6. [6] T. Coulhon, X. T. Duong & X. D. Li – « Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 p 2 », Studia Math.154 (2003), p. 37–57. Zbl1035.42014MR1949048
  7. [7] S. Klainerman & I. Rodnianski – « A geometric approach to the Littlewood-Paley theory », Geom. Funct. Anal.16 (2006), p. 126–163. Zbl1206.35080MR2221254
  8. [8] N. Lohoué – « Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive », Ann. Sci. École Norm. Sup.20 (1987), p. 505–544. Zbl0636.43002MR932796
  9. [9] G. Olafsson & S. Zheng – « Harmonic analysis related to Schrödinger operators », in Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., 2008, p. 213–230. Zbl1256.42031MR2440138
  10. [10] W. Schlag – « A remark on Littlewood-Paley theory for the distorted Fourier transform », Proc. Amer. Math. Soc. 135 (2007), p. 437–451 (electronic). Zbl1159.42008MR2255290
  11. [11] —, « Lecture notes on harmonic analysis », http://www.math.uchicago.edu/~schlag/book.pdf. Zbl0991.42010
  12. [12] C. D. Sogge – Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge Univ. Press, 1993. Zbl0783.35001MR1205579
  13. [13] E. M. Stein – Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
  14. [14] M. E. Taylor – « L p -estimates on functions of the Laplace operator », Duke Math. J.58 (1989), p. 773–793. Zbl0691.58043MR1016445
  15. [15] —, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer, 1997. Zbl1206.35004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.