Universal covering spaces and fundamental groups in algebraic geometry as schemes

Ravi Vakil[1]; Kirsten Wickelgren[2]

  • [1] Department of Mathematics, Stanford University Stanford CA USA 94305
  • [2] Dept. of Mathematics, Harvard University One Oxford St. Cambridge MA USA 02138

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 2, page 489-526
  • ISSN: 1246-7405

Abstract

top
In topology, the notions of the fundamental group and the universal cover are closely intertwined. By importing usual notions from topology into the algebraic and arithmetic setting, we construct a fundamental group family from a universal cover, both of which are schemes. A geometric fiber of the fundamental group family (as a topological group) is canonically the étale fundamental group. The constructions apply to all connected quasicompact quasiseparated schemes. With different methods and hypotheses, this fundamental group family was already constructed by Deligne.

How to cite

top

Vakil, Ravi, and Wickelgren, Kirsten. "Universal covering spaces and fundamental groups in algebraic geometry as schemes." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 489-526. <http://eudml.org/doc/219852>.

@article{Vakil2011,
abstract = {In topology, the notions of the fundamental group and the universal cover are closely intertwined. By importing usual notions from topology into the algebraic and arithmetic setting, we construct a fundamental group family from a universal cover, both of which are schemes. A geometric fiber of the fundamental group family (as a topological group) is canonically the étale fundamental group. The constructions apply to all connected quasicompact quasiseparated schemes. With different methods and hypotheses, this fundamental group family was already constructed by Deligne.},
affiliation = {Department of Mathematics, Stanford University Stanford CA USA 94305; Dept. of Mathematics, Harvard University One Oxford St. Cambridge MA USA 02138},
author = {Vakil, Ravi, Wickelgren, Kirsten},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {fundamental group; group scheme; universal cover},
language = {eng},
month = {6},
number = {2},
pages = {489-526},
publisher = {Société Arithmétique de Bordeaux},
title = {Universal covering spaces and fundamental groups in algebraic geometry as schemes},
url = {http://eudml.org/doc/219852},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Vakil, Ravi
AU - Wickelgren, Kirsten
TI - Universal covering spaces and fundamental groups in algebraic geometry as schemes
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 489
EP - 526
AB - In topology, the notions of the fundamental group and the universal cover are closely intertwined. By importing usual notions from topology into the algebraic and arithmetic setting, we construct a fundamental group family from a universal cover, both of which are schemes. A geometric fiber of the fundamental group family (as a topological group) is canonically the étale fundamental group. The constructions apply to all connected quasicompact quasiseparated schemes. With different methods and hypotheses, this fundamental group family was already constructed by Deligne.
LA - eng
KW - fundamental group; group scheme; universal cover
UR - http://eudml.org/doc/219852
ER -

References

top
  1. M. Artin, Grothendieck Topologies. Lecture Notes, Harvard University Math. Dept., Cambridge, Mass 1962. Zbl0208.48701
  2. M. Artin and B. Mazur, Etale Homotopy. Lecture Notes in Math. 100, Springer-Verlag, Berlin-New York 1969. Zbl0182.26001MR245577
  3. E. Artin and J. Tate, Class Field Theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968. Zbl0176.33504MR223335
  4. D. K. Biss, A generalized approach to the fundamental group. Amer. Math. Monthly 107 (2000), no. 8, 711–720. Zbl1016.57003MR1790918
  5. D. K. Biss, The topological fundamental group and generalized covering spaces. Topology Appl. 124 (2002), no. 3, 355–371. Zbl1016.57002MR1930651
  6. M. Boggi, Profinite Teichmüller theory. Math. Nachr. 279 (2006), no. 9–10, 953–987. Zbl1105.14031MR2242960
  7. S. Bosch, W. Lutkebohmert, M. Raynaud, Néron Models. Springer, 1990. Zbl0705.14001MR1045822
  8. F. Bogomolov and Y. Tschinkel, Unramified correspondences. In Algebraic number theory and algebraic geometry, 17–25, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002. Zbl1082.14511MR1936365
  9. P. Deligne, Le groupe fondamental de la droite projective moins trois points. In Galois groups over (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989. Zbl0742.14022MR1012168
  10. M. Demazure and A. Grothendieck, Séminaire de Géométrie Algébrique du Bois Marie 1962/64, Schémas en Groupes II. Lecture Notes in Mathematics 152, Springer-Verlag, 1970. Zbl0209.24201
  11. L. Ehrenpreis, Cohomology with bounds. In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) pp. 389–395, Academic Press, London. Zbl0239.55006MR276831
  12. H. Esnault and P. H. Hai, The fundamental groupoid scheme and applications. Preprint 2006, arXiv:math/0611115v2. Zbl1167.14011MR2498355
  13. W.-D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist. J. Number Theory 1 (1969), 346–374. Zbl0192.40101MR282946
  14. P. Gille, Le groupe fondamental sauvage d’une courbe affine en caractétristique p &gt; 0 . In Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 217–231, Progr. Math. 187, Birkhäuser, Basel, 2000. Zbl0978.14034MR1768103
  15. A. Grothendieck, Éléments de géométrie algébrique II. Étude globale élémentaire de quelques classes de morphismes. IHES Publ. Math. No. 11, 1961. MR217084
  16. A. Grothendieck, Éléments de géométrie algébrique III, Première Partie. IHES Publ. Math. No. 11, 1961. 
  17. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Seconde partie. IHES Publ. Math. No. 24, 1965. Zbl0135.39701
  18. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Troisième partie. IHES Publ. Math. No. 28, 1967. Zbl0144.19904
  19. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Quatrième partie. IHES Publ. Math. No. 32, 1967. Zbl0153.22301
  20. A. Grothendieck, Brief an G. Faltings. (German) [Letter to G. Faltings] With an English translation on pp. 285–293. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 49–58, Cambridge Univ. Press, Cambridge, 1997. Zbl0901.14002MR1483108
  21. A. Grothendieck, Esquisse d’un programme. (French. French summary) [Sketch of a program] With an English translation on pp. 243–283. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 5–48, Cambridge Univ. Press, Cambridge, 1997. Zbl0901.14001MR1483107
  22. A. Grothendieck (dir.), Revêtements étales et groupe fondamental (SGA1). Documents Mathématiques 3, Soc. Math. Fr., Paris, 2003. MR2017446
  23. J. Kahn and V. Markovic, Random ideal triangulations and the Weil-Petersson distance between finite degree covers of punctured Riemann surfaces. Preprint 2008, arXiv:0806.2304v1. 
  24. H. W. Lenstra, Galois Theory for Schemes. Course notes available from the server of the Universiteit Leiden Mathematics Department, http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf, Electronic third edition: 2008. 
  25. A. Magid, Covering spaces of algebraic groups. Amer. Math. Montly 83 (1976), 614–621. Zbl0346.14008MR422292
  26. V. Markovic and D. Šarić, Teichmüller mapping class group of the universal hyperbolic solenoid. Trans. Amer. Math. Soc. 358 (2006), no. 6, 2637–2650. Zbl1095.30040MR2204048
  27. C. McMullen, Thermodynamics, dimension, and the Weil-Petersson metric. Invent. Math. 173 (2008), no. 2, 365–425. Zbl1156.30035MR2415311
  28. J. S. Milne, Étale cohomology. Princeton Math. Ser., 33, Princeton U. P., Princeton, N.J., 1980. Zbl0433.14012MR559531
  29. M. Miyanishi, On the algebraic fundamental group of an algebraic group. J. Math. Kyoto Universit. 12 (1972), 351–367. Zbl0241.14012MR301023
  30. S. Mochizuki, Correspondences on hyperbolic curves. Preprint, available at http://www.kurims.kyoto-u.ac.jp/ motizuki/papers-english.html Zbl0965.14013MR1637015
  31. F. Morel, 𝔸 1 -algebraic topology over a field. Preprint, available at http://www.mathematik.uni-muenchen.de/ morel/preprint.html MR2275634
  32. J. W. Morgan and I. Morrison, A van Kampen theorem for weak joins. Proc. London Math. Soc. (3) 53 (1986), no. 3, 562–576. Zbl0609.57002MR868459
  33. J. P. Murre, Lectures on an Introduction to Grothendieck’s theory of the Fundamental Group. Notes by S. Anantharaman, TIFR Lect. on Math., no. 40, TIFR, Bombay, 1967. Zbl0198.26202MR302650
  34. J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields. Second edition. Grundlehren der Mathematischen Wissenschaften, 323. Springer-Verlag, Berlin, 2008. Zbl1136.11001MR2392026
  35. M. Nori, On the representations of the fundamental group. Compositio Math., 33, (1976), no. 1, 29–41. Zbl0337.14016MR417179
  36. M. Nori, The fundamental group-scheme. Proc. Indian Acad. Sci. (Math. Sci.) 91, no. 2, 1982, 73–122. Zbl0586.14006MR682517
  37. F. Oort, The algebraic fundamental group. In Geometric Galois Actions, 1, 67–83, London Math. Soc. Lecture Note Ser., 242, Cambridge UP, Cambridge, 1997. Zbl0911.14006MR1483110
  38. R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417 (1991), 191–213. Zbl0721.14009MR1103912
  39. F. Pop, Anabelian Phenomena in Geometry and Arithmetic. 2005 notes, available at http://modular.math.washington.edu/swc/aws/notes/files/05PopNotes.pdf Zbl1303.11123
  40. I. I. Piatetski-Shapiro and I. R. Shafarevich, Galois theory of transcendental extensions and uniformization. In Igor R. Shafarevich: Collected Mathematical Papers, Springer-Verlag, New York, 1980, 387-421. 
  41. L. Ribes and P. Zalesskii, Profinite Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, 40, Springer, Berlin, 2000. Zbl0949.20017MR1775104
  42. J.-P. Serre, Construction de revêtements étales de la droite affine en caractéristique p . C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 341–346. Zbl0726.14021MR1071640
  43. J.-P. Serre, Groupes proalgébriques. IHES Publ. Math. No. 7, 1960. Zbl0097.35901MR118722
  44. J.-P. Serre, Galois cohomology. P. Ion trans., Springer-Verlag, Berlin, 2002. Zbl1004.12003MR1867431
  45. E. Spanier, Algebraic Topology. McGraw-Hill Book Co., New York, 1966. Zbl0477.55001MR210112
  46. D. Sullivan, Linking the universalities of Milnor-Thurston, Feigenbaum, and Ahlfors-Bers. In Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), 543–564, Publish or Perish, Houston TX, 1993. Zbl0803.58018MR1215976
  47. T. Szamuely, Le théorème de Tamagawa I. In Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 185–201, Progr. Math. 187, Birkhäuser, Basel, 2000. Zbl0978.14014MR1768101
  48. T. Szamuely, Galois Groups and Fundamental Groups. Cambridge Studies in Advanced Mathematics, vol. 117, to be published by Cambridge University Press in 2009. Zbl1189.14002MR2548205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.