Universal covering spaces and fundamental groups in algebraic geometry as schemes
Ravi Vakil[1]; Kirsten Wickelgren[2]
- [1] Department of Mathematics, Stanford University Stanford CA USA 94305
- [2] Dept. of Mathematics, Harvard University One Oxford St. Cambridge MA USA 02138
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 2, page 489-526
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Artin, Grothendieck Topologies. Lecture Notes, Harvard University Math. Dept., Cambridge, Mass 1962. Zbl0208.48701
- M. Artin and B. Mazur, Etale Homotopy. Lecture Notes in Math. 100, Springer-Verlag, Berlin-New York 1969. Zbl0182.26001MR245577
- E. Artin and J. Tate, Class Field Theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968. Zbl0176.33504MR223335
- D. K. Biss, A generalized approach to the fundamental group. Amer. Math. Monthly 107 (2000), no. 8, 711–720. Zbl1016.57003MR1790918
- D. K. Biss, The topological fundamental group and generalized covering spaces. Topology Appl. 124 (2002), no. 3, 355–371. Zbl1016.57002MR1930651
- M. Boggi, Profinite Teichmüller theory. Math. Nachr. 279 (2006), no. 9–10, 953–987. Zbl1105.14031MR2242960
- S. Bosch, W. Lutkebohmert, M. Raynaud, Néron Models. Springer, 1990. Zbl0705.14001MR1045822
- F. Bogomolov and Y. Tschinkel, Unramified correspondences. In Algebraic number theory and algebraic geometry, 17–25, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002. Zbl1082.14511MR1936365
- P. Deligne, Le groupe fondamental de la droite projective moins trois points. In Galois groups over (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989. Zbl0742.14022MR1012168
- M. Demazure and A. Grothendieck, Séminaire de Géométrie Algébrique du Bois Marie 1962/64, Schémas en Groupes II. Lecture Notes in Mathematics 152, Springer-Verlag, 1970. Zbl0209.24201
- L. Ehrenpreis, Cohomology with bounds. In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) pp. 389–395, Academic Press, London. Zbl0239.55006MR276831
- H. Esnault and P. H. Hai, The fundamental groupoid scheme and applications. Preprint 2006, arXiv:math/0611115v2. Zbl1167.14011MR2498355
- W.-D. Geyer, Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist. J. Number Theory 1 (1969), 346–374. Zbl0192.40101MR282946
- P. Gille, Le groupe fondamental sauvage d’une courbe affine en caractétristique . In Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 217–231, Progr. Math. 187, Birkhäuser, Basel, 2000. Zbl0978.14034MR1768103
- A. Grothendieck, Éléments de géométrie algébrique II. Étude globale élémentaire de quelques classes de morphismes. IHES Publ. Math. No. 11, 1961. MR217084
- A. Grothendieck, Éléments de géométrie algébrique III, Première Partie. IHES Publ. Math. No. 11, 1961.
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Seconde partie. IHES Publ. Math. No. 24, 1965. Zbl0135.39701
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Troisième partie. IHES Publ. Math. No. 28, 1967. Zbl0144.19904
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Quatrième partie. IHES Publ. Math. No. 32, 1967. Zbl0153.22301
- A. Grothendieck, Brief an G. Faltings. (German) [Letter to G. Faltings] With an English translation on pp. 285–293. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 49–58, Cambridge Univ. Press, Cambridge, 1997. Zbl0901.14002MR1483108
- A. Grothendieck, Esquisse d’un programme. (French. French summary) [Sketch of a program] With an English translation on pp. 243–283. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 5–48, Cambridge Univ. Press, Cambridge, 1997. Zbl0901.14001MR1483107
- A. Grothendieck (dir.), Revêtements étales et groupe fondamental (SGA1). Documents Mathématiques 3, Soc. Math. Fr., Paris, 2003. MR2017446
- J. Kahn and V. Markovic, Random ideal triangulations and the Weil-Petersson distance between finite degree covers of punctured Riemann surfaces. Preprint 2008, arXiv:0806.2304v1.
- H. W. Lenstra, Galois Theory for Schemes. Course notes available from the server of the Universiteit Leiden Mathematics Department, http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf, Electronic third edition: 2008.
- A. Magid, Covering spaces of algebraic groups. Amer. Math. Montly 83 (1976), 614–621. Zbl0346.14008MR422292
- V. Markovic and D. Šarić, Teichmüller mapping class group of the universal hyperbolic solenoid. Trans. Amer. Math. Soc. 358 (2006), no. 6, 2637–2650. Zbl1095.30040MR2204048
- C. McMullen, Thermodynamics, dimension, and the Weil-Petersson metric. Invent. Math. 173 (2008), no. 2, 365–425. Zbl1156.30035MR2415311
- J. S. Milne, Étale cohomology. Princeton Math. Ser., 33, Princeton U. P., Princeton, N.J., 1980. Zbl0433.14012MR559531
- M. Miyanishi, On the algebraic fundamental group of an algebraic group. J. Math. Kyoto Universit. 12 (1972), 351–367. Zbl0241.14012MR301023
- S. Mochizuki, Correspondences on hyperbolic curves. Preprint, available at http://www.kurims.kyoto-u.ac.jp/ motizuki/papers-english.html Zbl0965.14013MR1637015
- F. Morel, -algebraic topology over a field. Preprint, available at http://www.mathematik.uni-muenchen.de/ morel/preprint.html MR2275634
- J. W. Morgan and I. Morrison, A van Kampen theorem for weak joins. Proc. London Math. Soc. (3) 53 (1986), no. 3, 562–576. Zbl0609.57002MR868459
- J. P. Murre, Lectures on an Introduction to Grothendieck’s theory of the Fundamental Group. Notes by S. Anantharaman, TIFR Lect. on Math., no. 40, TIFR, Bombay, 1967. Zbl0198.26202MR302650
- J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields. Second edition. Grundlehren der Mathematischen Wissenschaften, 323. Springer-Verlag, Berlin, 2008. Zbl1136.11001MR2392026
- M. Nori, On the representations of the fundamental group. Compositio Math., 33, (1976), no. 1, 29–41. Zbl0337.14016MR417179
- M. Nori, The fundamental group-scheme. Proc. Indian Acad. Sci. (Math. Sci.) 91, no. 2, 1982, 73–122. Zbl0586.14006MR682517
- F. Oort, The algebraic fundamental group. In Geometric Galois Actions, 1, 67–83, London Math. Soc. Lecture Note Ser., 242, Cambridge UP, Cambridge, 1997. Zbl0911.14006MR1483110
- R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417 (1991), 191–213. Zbl0721.14009MR1103912
- F. Pop, Anabelian Phenomena in Geometry and Arithmetic. 2005 notes, available at http://modular.math.washington.edu/swc/aws/notes/files/05PopNotes.pdf Zbl1303.11123
- I. I. Piatetski-Shapiro and I. R. Shafarevich, Galois theory of transcendental extensions and uniformization. In Igor R. Shafarevich: Collected Mathematical Papers, Springer-Verlag, New York, 1980, 387-421.
- L. Ribes and P. Zalesskii, Profinite Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, 40, Springer, Berlin, 2000. Zbl0949.20017MR1775104
- J.-P. Serre, Construction de revêtements étales de la droite affine en caractéristique . C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 341–346. Zbl0726.14021MR1071640
- J.-P. Serre, Groupes proalgébriques. IHES Publ. Math. No. 7, 1960. Zbl0097.35901MR118722
- J.-P. Serre, Galois cohomology. P. Ion trans., Springer-Verlag, Berlin, 2002. Zbl1004.12003MR1867431
- E. Spanier, Algebraic Topology. McGraw-Hill Book Co., New York, 1966. Zbl0477.55001MR210112
- D. Sullivan, Linking the universalities of Milnor-Thurston, Feigenbaum, and Ahlfors-Bers. In Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), 543–564, Publish or Perish, Houston TX, 1993. Zbl0803.58018MR1215976
- T. Szamuely, Le théorème de Tamagawa I. In Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), 185–201, Progr. Math. 187, Birkhäuser, Basel, 2000. Zbl0978.14014MR1768101
- T. Szamuely, Galois Groups and Fundamental Groups. Cambridge Studies in Advanced Mathematics, vol. 117, to be published by Cambridge University Press in 2009. Zbl1189.14002MR2548205