Contact Homology, Capacity and Non-Squeezing in 2 n × S 1 via Generating Functions

Sheila Sandon[1]

  • [1] Instituto Superior Técnico Departamento de Matemática Av. Rovisco Pais 1049-001 Lisboa (Portugal)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 145-185
  • ISSN: 0373-0956

Abstract

top
Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.

How to cite

top

Sandon, Sheila. "Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions." Annales de l’institut Fourier 61.1 (2011): 145-185. <http://eudml.org/doc/219854>.

@article{Sandon2011,
abstract = {Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.},
affiliation = {Instituto Superior Técnico Departamento de Matemática Av. Rovisco Pais 1049-001 Lisboa (Portugal)},
author = {Sandon, Sheila},
journal = {Annales de l’institut Fourier},
keywords = {Contact non-squeezing; contact capacity; contact homology; orderability of contact manifolds; generating functions; contact non-squeezing},
language = {eng},
number = {1},
pages = {145-185},
publisher = {Association des Annales de l’institut Fourier},
title = {Contact Homology, Capacity and Non-Squeezing in $\mathbb\{R\}^\{2n\}\times S^\{1\}$ via Generating Functions},
url = {http://eudml.org/doc/219854},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Sandon, Sheila
TI - Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 145
EP - 185
AB - Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.
LA - eng
KW - Contact non-squeezing; contact capacity; contact homology; orderability of contact manifolds; generating functions; contact non-squeezing
UR - http://eudml.org/doc/219854
ER -

References

top
  1. M. Bhupal, Legendrian intersections in the 1-jet bundle, (1998) 
  2. M. Bhupal, A partial order on the group of contactomorphisms of 2 n + 1 via generating functions, Turkish J. Math. 25 (2001), 125-135 Zbl1007.53067MR1829083
  3. P. Biran, L. Polterovich, D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003), 65-118 Zbl1034.53089MR1991647
  4. M. Chaperon, Une idée du type “géodésiques brisées” pour les systémes hamiltoniens, C. R. Acad. Sci. Paris, Sér. I Math. 298 (1984), 293-296 Zbl0576.58010MR765426
  5. M. Chaperon, On generating families, The Floer Memorial Volume 133 (1995), 283-296, H. Hofer et al., Basel Zbl0837.58003MR1362831
  6. Y. Chekanov, Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl. 30 (1996), 118-128 Zbl0873.58017MR1402081
  7. Y. Chekanov, O. van Koert, F. Schlenk, Minimal atlases of closed contact manifolds, arXiv:0807.3047 Zbl1186.53096
  8. Y. Chekanov, P. Pushkar, Combinatorics of fronts of Legendrian links, and Arnold’s 4-conjectures, Russian Math. Surveys 60 (2005), 95-149 Zbl1085.57008MR2145660
  9. V. Chernov, S. Nemirovski, Legendrian links, causality, and the Low conjecture, arXiv:0810.5091v2 Zbl1186.83013
  10. V. Chernov, S. Nemirovski, Non-negative Legendrian isotopy in S T * M , arXiv:0905.0983 Zbl1194.53066
  11. K. Cieliebak, V. Ginzburg, E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv. 79 (2004), 554-581 Zbl1073.53118MR2081726
  12. V. Colin, E. Ferrand, P. Pushkar, Positive loops of Legendrian embeddings, (2007) 
  13. P. Eiseman, J. Lima, J. Sabloff, L. Traynor, A partial ordering on slices of planar Lagrangians, J. Fixed Point Theory Appl. 3 (2008), 431-447 Zbl1149.53318MR2434456
  14. Y. Eliashberg, New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991), 513-520 Zbl0733.58011MR1102580
  15. Y. Eliashberg, M. Gromov, Lagrangian intersection theory : finite-dimensional approach, Geometry of differential equations 186 (1998), Amer. Math. Soc., Providence, RI Zbl0919.58015MR1732407
  16. Y. Eliashberg, S. S. Kim, L. Polterovich, Geometry of contact transformations and domains: orderability vs squeezing, Geom. and Topol. 10 (2006), 1635-1747 Zbl1134.53044MR2284048
  17. Y. Eliashberg, L. Polterovich, Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000), 1448-1476 Zbl0986.53036MR1810748
  18. E. Ferrand, P. Pushkar, Morse theory and global coexistence of singularities on wave fronts, J. London Math. Soc. 74 (2006), 527-544 Zbl1113.57015MR2269593
  19. D. Fuchs, D. Rutherford, Generating families and Legendrian contact homology in the standard contact space, arXiv:0807.4277 Zbl1237.57026
  20. H. Geiges, An Introduction to Contact Topology, (2008), Cambridge University Press Zbl1153.53002MR2397738
  21. V. Ginzburg, B. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J. 123 (2004), 1-47 Zbl1066.53138MR2060021
  22. A. Givental, Nonlinear generalization of the Maslov index, Theory of singularities and its applications 1 (1990), 71-103, Amer. Math. Soc., Providence, RI Zbl0728.53024MR1089671
  23. A. Givental, A symplectic fixed point theorem for toric manifolds, The Floer Memorial Volume 133 (1995), 445-481, H. Hofer et al., Basel Zbl0835.55001MR1362837
  24. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent.Math. 82 (1985), 307-347 Zbl0592.53025MR809718
  25. D. Hermann, Inner and outer Hamiltonian capacities, Bull. Soc. Math. France 132 (2004), 509-541 Zbl1083.53083MR2131902
  26. H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, (1994), Birkhäuser Zbl0805.58003MR1306732
  27. L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 17-183 Zbl0212.46601MR388463
  28. J. Jordan, L. Traynor, Generating family invariants for Legendrian links of unknots, Algebr. Geom. Topol. 6 (2006), 895-933 Zbl1130.57018MR2240920
  29. F. Laudenbach, J. C. Sikorav, Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibre cotangent, Invent. Math. 82 (1985), 349-357 Zbl0592.58023MR809719
  30. D. McDuff, D. Salamon, Introduction to Symplectic Topology, (1998), Oxford University Press Zbl1066.53137MR1698616
  31. D. Milinković, Morse homology for generating functions of Lagrangian submanifolds, Trans. Amer. Math. Soc. 351 (1999), 3953-3974 Zbl0938.53043MR1475690
  32. J. C. Sikorav, Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C.R. Acad. Sci. Paris, Sér. I Math. 302 (1986), 119-122 Zbl0602.58019MR830282
  33. J. C. Sikorav, Problemes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv. 62 (1987), 62-73 Zbl0684.58015MR882965
  34. D. Théret, Utilisation des fonctions génératrices en géométrie symplectique globale, (1995) 
  35. D. Théret, Rotation numbers of Hamiltonian isotopies in complex projective spaces, Duke Math. J. 94 (1998), 13-27 Zbl0976.53093MR1635892
  36. D. Théret, A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl. 96 (1999), 249-266 Zbl0952.53037MR1709692
  37. L. Traynor, Symplectic Homology via generating functions, Geom. Funct. Anal. 4 (1994), 718-748 Zbl0822.58020MR1302337
  38. L. Traynor, Generating Function Polynomials for Legendrian Links, Geom. and Topol. 5 (2001), 719-760 Zbl1030.53086MR1871403
  39. C. Viterbo, Functors and computations in Floer homology with applications, Part II Zbl0954.57015
  40. C. Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systémes hamiltoniens, Bull. Soc. Math. France 115 (1987), 361-390 Zbl0639.58018MR926533
  41. C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685-710 Zbl0735.58019MR1157321

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.