Inner and outer hamiltonian capacities
Bulletin de la Société Mathématique de France (2004)
- Volume: 132, Issue: 4, page 509-541
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHermann, David. "Inner and outer hamiltonian capacities." Bulletin de la Société Mathématique de France 132.4 (2004): 509-541. <http://eudml.org/doc/272349>.
@article{Hermann2004,
abstract = {The aim of this paper is to compare two symplectic capacities in $\mathbb \{C\}^n$ related with periodic orbits of Hamiltonian systems: the Floer-Hofer capacity arising from symplectic homology, and the Viterbo capacity based on generating functions. It is shown here that the inner Floer-Hofer capacity is not larger than the Viterbo capacity and that they are equal for open sets with restricted contact type boundary. As an application, we prove that the Viterbo capacity of any compact Lagrangian submanifold is nonzero.},
author = {Hermann, David},
journal = {Bulletin de la Société Mathématique de France},
keywords = {symplectic capacities; lagrangian submanifolds},
language = {eng},
number = {4},
pages = {509-541},
publisher = {Société mathématique de France},
title = {Inner and outer hamiltonian capacities},
url = {http://eudml.org/doc/272349},
volume = {132},
year = {2004},
}
TY - JOUR
AU - Hermann, David
TI - Inner and outer hamiltonian capacities
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 4
SP - 509
EP - 541
AB - The aim of this paper is to compare two symplectic capacities in $\mathbb {C}^n$ related with periodic orbits of Hamiltonian systems: the Floer-Hofer capacity arising from symplectic homology, and the Viterbo capacity based on generating functions. It is shown here that the inner Floer-Hofer capacity is not larger than the Viterbo capacity and that they are equal for open sets with restricted contact type boundary. As an application, we prove that the Viterbo capacity of any compact Lagrangian submanifold is nonzero.
LA - eng
KW - symplectic capacities; lagrangian submanifolds
UR - http://eudml.org/doc/272349
ER -
References
top- [1] K. Cieliebak, A. Floer & H. Hofer – « Symplectic homology II (a general construction) », Math. Z.218 (1995), p. 103–122. Zbl0869.58011MR1312580
- [2] K. Cieliebak, A. Floer, H. Hofer & K. Wysocky – « Applications of symplectic homology II (stability of the action spectrum) », Math. Z.223 (1996), p. 27–45. Zbl0869.58013MR1408861
- [3] I. Ekeland & H. Hofer – « Symplectic topology and Hamiltonian dynamics », Math. Z.200 (1990), p. 355–378. Zbl0641.53035MR978597
- [4] A. Floer & H. Hofer – « Symplectic homology I (open sets in ) », Math. Z.215 (1994), p. 37–88. Zbl0810.58013MR1254813
- [5] A. Floer, H. Hofer & K. Wysocki – « Applications of symplectic homology I », Math. Z.217 (1994), p. 577–606. Zbl0869.58012MR1306027
- [6] M. Gromov – « Pseudo holomorphic curves in symplectic manifolds », Invent. Math.82 (1985), p. 307–347. Zbl0592.53025
- [7] D. Hermann – « Holomorphic curves and Hamiltonian systems in an open set with restricted contact type boundary », Duke Math. J. 103 (2000), no. 2, p. 335–374. Zbl1011.53058MR1760631
- [8] H. Hofer & E. Zehnder – Symplectic invariants and Hamiltonian dynamics, Birkhäuser, 1994. Zbl0805.58003MR1306732
- [9] D. Salamon & E. Zehnder – « Morse theory for periodic solutions of Hamiltonian systems and the Maslov index », Comm. Pure Appl. Math.45 (1992), p. 1303–1360. Zbl0766.58023MR1181727
- [10] D. Théret – « A Lagrangian camel », Comment. Math. Helv. 74 (1999), no. 4, p. 591–614. Zbl0954.37029MR1730659
- [11] —, « A complete proof of Viterbo’s uniqueness theorem on generating functions », Topology Appl. 96 (1999), no. 3, p. 246–266. Zbl0952.53037MR1709692
- [12] L. Traynor – « Symplectic homology via generating functions », Geom. Funct. Anal. 4 (1994), no. 6, p. 718–748. Zbl0822.58020MR1302337
- [13] C. Viterbo – « A new obstruction to embedding Lagrangian tori », Invent. Math.100 (1990), p. 301–320. Zbl0727.58015MR1047136
- [14] —, « Symplectic topology as the geometry of generating functions », Math. Ann.292 (1992), p. 685–710. Zbl0735.58019MR1157321
- [15] —, « Functors and computations in Floer homology with applications II », (1998), Preprint Université Paris-Sud 98-15. To appear in GAFA.
- [16] —, « Functors and computations in Floer homology with applications I », Geom. Funct. Anal. 9 (1999), no. 5, p. 985–1033. Zbl0954.57015MR1726235
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.