Smooth components of Springer fibers

William Graham[1]; R. Zierau[2]

  • [1] University of Georgia Mathematics Department Athens, Georgia 30602 (USA)
  • [2] Oklahoma State University Mathematics Department Stillwater, Oklahoma 74078 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 5, page 2139-2182
  • ISSN: 0373-0956

Abstract

top
This article studies components of Springer fibers for that are associated to closed orbits of on the flag variety of . These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of . We prove that if is a line bundle on the flag variety associated to a dominant weight, then the higher cohomology groups of the restriction of to these components vanish. We derive some consequences of localization theorems in equivariant cohomology and -theory, applied to these components. In the appendix we identify the tableaux corresponding to these components, under the bijective correspondence between components of Springer fibers for and standard tableaux.

How to cite

top

Graham, William, and Zierau, R.. "Smooth components of Springer fibers." Annales de l’institut Fourier 61.5 (2011): 2139-2182. <http://eudml.org/doc/219859>.

@article{Graham2011,
abstract = {This article studies components of Springer fibers for $\mathfrak\{gl\}(n)$ that are associated to closed orbits of $GL(p)\times GL(q)$ on the flag variety of $GL(n),\, n=p+q$. These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of $GL(n)$. We prove that if $\mathcal\{L\}$ is a line bundle on the flag variety associated to a dominant weight, then the higher cohomology groups of the restriction of $\mathcal\{L\}$ to these components vanish. We derive some consequences of localization theorems in equivariant cohomology and $K$-theory, applied to these components. In the appendix we identify the tableaux corresponding to these components, under the bijective correspondence between components of Springer fibers for $GL(n)$ and standard tableaux.},
affiliation = {University of Georgia Mathematics Department Athens, Georgia 30602 (USA); Oklahoma State University Mathematics Department Stillwater, Oklahoma 74078 (USA)},
author = {Graham, William, Zierau, R.},
journal = {Annales de l’institut Fourier},
keywords = {Springer fibers; iterated bundles; flag varieties; nilpotent orbits},
language = {eng},
number = {5},
pages = {2139-2182},
publisher = {Association des Annales de l’institut Fourier},
title = {Smooth components of Springer fibers},
url = {http://eudml.org/doc/219859},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Graham, William
AU - Zierau, R.
TI - Smooth components of Springer fibers
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 2139
EP - 2182
AB - This article studies components of Springer fibers for $\mathfrak{gl}(n)$ that are associated to closed orbits of $GL(p)\times GL(q)$ on the flag variety of $GL(n),\, n=p+q$. These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of $GL(n)$. We prove that if $\mathcal{L}$ is a line bundle on the flag variety associated to a dominant weight, then the higher cohomology groups of the restriction of $\mathcal{L}$ to these components vanish. We derive some consequences of localization theorems in equivariant cohomology and $K$-theory, applied to these components. In the appendix we identify the tableaux corresponding to these components, under the bijective correspondence between components of Springer fibers for $GL(n)$ and standard tableaux.
LA - eng
KW - Springer fibers; iterated bundles; flag varieties; nilpotent orbits
UR - http://eudml.org/doc/219859
ER -

References

top
  1. M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28 Zbl0521.58025MR721448
  2. L. Barchini, R. Zierau, Certain components of Springer fibers and associated cycles for discrete series representations of , Represent. Theory 12 (2008), 403-434 Zbl1186.22017MR2461236
  3. Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR204532
  4. Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) 514 (1998), 1-37, Kluwer Acad. Publ., Dordrecht Zbl0946.14008MR1649623
  5. Jen-Tseh Chang, Characteristic cycles of discrete series for -rank one groups, Trans. Amer. Math. Soc. 341 (1994), 603-622 Zbl0817.22009MR1145961
  6. Neil Chriss, Victor Ginzburg, Representation theory and complex geometry, (1997), Birkhäuser Boston Inc., Boston, MA Zbl1185.22001MR1433132
  7. C. De Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 15-34 Zbl0646.14034MR924700
  8. Dan Edidin, William Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), 619-636 Zbl0980.14004MR1623412
  9. Lucas Fresse, Betti numbers of Springer fibers in type , J. Algebra 322 (2009), 2566-2579 Zbl1186.14051MR2553695
  10. Lucas Fresse, Singular components of Springer fibers in the two-column case, Ann. Inst. Fourier (Grenoble) 59 (2009), 2429-2444 Zbl1191.14060MR2640925
  11. Lucas Fresse, A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups 15 (2010), 285-331 Zbl1245.14047MR2657444
  12. Francis Y. C. Fung, On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math. 178 (2003), 244-276 Zbl1035.20004MR1994220
  13. Devra Garfinkle, The annihilators of irreducible Harish-Chandra modules for and other type groups, Amer. J. Math. 115 (1993), 305-369 Zbl0786.22023MR1216434
  14. William Graham, Equivariant -theory and Schubert varieties 
  15. William Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), 599-614 Zbl1069.14055MR1853356
  16. William Graham, Shrawan Kumar, On positivity in -equivariant -theory of flag varieties, Int. Math. Res. Not. IMRN (2008) Zbl1185.14043MR2439542
  17. A. Grothendieck, Séminaire de géométrie algébrique. Revêtements étales et groupe fondamental, 224 (1971), Springer-Verlag, Heidelberg Zbl0234.14002MR354651
  18. J. J. Güemes, On the homology classes for the components of some fibres of Springer’s resolution, Astérisque (1989), 257-269 Zbl0704.20038MR1021513
  19. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  20. Birger Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math. 16 (1972), 229-236 Zbl0246.14010MR299608
  21. Allen Knutson, Schubert patches degenerate to subword complexes, Transform. Groups 13 (2008), 715-726 Zbl1200.14099MR2452612
  22. Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1026.17030MR1923198
  23. G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), 169-178 Zbl0473.20029MR641425
  24. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
  25. N. G. J. Pagnon, N. Ressayre, Adjacency of Young tableaux and the Springer fibers, Selecta Math. (N.S.) 12 (2006), 517-540 Zbl1133.14051MR2305610
  26. Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, 946 (1982), Springer-Verlag, Berlin Zbl0486.20025MR672610
  27. T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207 Zbl0374.20054MR442103
  28. T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293 Zbl0376.17002MR491988
  29. T. A. Springer, Contribution to Open problems in algebraic groups, (1983) 
  30. Robert Steinberg, An occurrence of the Robinson-Schensted correspondence, J. Algebra 113 (1988), 523-528 Zbl0653.20039MR929778
  31. Peter E. Trapa, Generalized Robinson-Schensted algorithms for real groups, Internat. Math. Res. Notices (1999), 803-834 Zbl0954.22010MR1710070
  32. J. A. Vargas, Fixed points under the action of unipotent elements of in the flag variety, Bol. Soc. Mat. Mexicana (2) 24 (1979), 1-14 Zbl0458.14019MR579665
  33. Matthieu Willems, Cohomologie et -théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux, Bull. Soc. Math. France 132 (2004), 569-589 Zbl1087.19004MR2131904

NotesEmbed ?

top

You must be logged in to post comments.