Smooth components of Springer fibers
William Graham[1]; R. Zierau[2]
- [1] University of Georgia Mathematics Department Athens, Georgia 30602 (USA)
- [2] Oklahoma State University Mathematics Department Stillwater, Oklahoma 74078 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 2139-2182
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28 Zbl0521.58025MR721448
- L. Barchini, R. Zierau, Certain components of Springer fibers and associated cycles for discrete series representations of , Represent. Theory 12 (2008), 403-434 Zbl1186.22017MR2461236
- Armand Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR204532
- Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) 514 (1998), 1-37, Kluwer Acad. Publ., Dordrecht Zbl0946.14008MR1649623
- Jen-Tseh Chang, Characteristic cycles of discrete series for -rank one groups, Trans. Amer. Math. Soc. 341 (1994), 603-622 Zbl0817.22009MR1145961
- Neil Chriss, Victor Ginzburg, Representation theory and complex geometry, (1997), Birkhäuser Boston Inc., Boston, MA Zbl1185.22001MR1433132
- C. De Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 15-34 Zbl0646.14034MR924700
- Dan Edidin, William Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), 619-636 Zbl0980.14004MR1623412
- Lucas Fresse, Betti numbers of Springer fibers in type , J. Algebra 322 (2009), 2566-2579 Zbl1186.14051MR2553695
- Lucas Fresse, Singular components of Springer fibers in the two-column case, Ann. Inst. Fourier (Grenoble) 59 (2009), 2429-2444 Zbl1191.14060MR2640925
- Lucas Fresse, A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups 15 (2010), 285-331 Zbl1245.14047MR2657444
- Francis Y. C. Fung, On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math. 178 (2003), 244-276 Zbl1035.20004MR1994220
- Devra Garfinkle, The annihilators of irreducible Harish-Chandra modules for and other type groups, Amer. J. Math. 115 (1993), 305-369 Zbl0786.22023MR1216434
- William Graham, Equivariant -theory and Schubert varieties
- William Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), 599-614 Zbl1069.14055MR1853356
- William Graham, Shrawan Kumar, On positivity in -equivariant -theory of flag varieties, Int. Math. Res. Not. IMRN (2008) Zbl1185.14043MR2439542
- A. Grothendieck, Séminaire de géométrie algébrique. Revêtements étales et groupe fondamental, 224 (1971), Springer-Verlag, Heidelberg Zbl0234.14002MR354651
- J. J. Güemes, On the homology classes for the components of some fibres of Springer’s resolution, Astérisque (1989), 257-269 Zbl0704.20038MR1021513
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- Birger Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math. 16 (1972), 229-236 Zbl0246.14010MR299608
- Allen Knutson, Schubert patches degenerate to subword complexes, Transform. Groups 13 (2008), 715-726 Zbl1200.14099MR2452612
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1026.17030MR1923198
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), 169-178 Zbl0473.20029MR641425
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- N. G. J. Pagnon, N. Ressayre, Adjacency of Young tableaux and the Springer fibers, Selecta Math. (N.S.) 12 (2006), 517-540 Zbl1133.14051MR2305610
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, 946 (1982), Springer-Verlag, Berlin Zbl0486.20025MR672610
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207 Zbl0374.20054MR442103
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279-293 Zbl0376.17002MR491988
- T. A. Springer, Contribution to Open problems in algebraic groups, (1983)
- Robert Steinberg, An occurrence of the Robinson-Schensted correspondence, J. Algebra 113 (1988), 523-528 Zbl0653.20039MR929778
- Peter E. Trapa, Generalized Robinson-Schensted algorithms for real groups, Internat. Math. Res. Notices (1999), 803-834 Zbl0954.22010MR1710070
- J. A. Vargas, Fixed points under the action of unipotent elements of in the flag variety, Bol. Soc. Mat. Mexicana (2) 24 (1979), 1-14 Zbl0458.14019MR579665
- Matthieu Willems, Cohomologie et -théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux, Bull. Soc. Math. France 132 (2004), 569-589 Zbl1087.19004MR2131904