Non-idempotent left symmetric left distributive groupoids

Tomáš Kepka

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 1, page 181-186
  • ISSN: 0010-2628

Abstract

top
Subdirectly irreducible non-idempotent groupoids satisfying x · x y = y and x · y z = x y · x z are studied.

How to cite

top

Kepka, Tomáš. "Non-idempotent left symmetric left distributive groupoids." Commentationes Mathematicae Universitatis Carolinae 35.1 (1994): 181-186. <http://eudml.org/doc/22003>.

@article{Kepka1994,
abstract = {Subdirectly irreducible non-idempotent groupoids satisfying $x\cdot xy=y$ and $x\cdot yz=xy\cdot xz$ are studied.},
author = {Kepka, Tomáš},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {groupoid; symmetric; distributive; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids},
language = {eng},
number = {1},
pages = {181-186},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-idempotent left symmetric left distributive groupoids},
url = {http://eudml.org/doc/22003},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Kepka, Tomáš
TI - Non-idempotent left symmetric left distributive groupoids
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 1
SP - 181
EP - 186
AB - Subdirectly irreducible non-idempotent groupoids satisfying $x\cdot xy=y$ and $x\cdot yz=xy\cdot xz$ are studied.
LA - eng
KW - groupoid; symmetric; distributive; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids
UR - http://eudml.org/doc/22003
ER -

References

top
  1. Dehornoy P., Free distributive groupoids, Journal of Pure and Appl. Algebra 61 (1989), 123-146. (1989) Zbl0686.20041MR1025918
  2. Laver R., The left distributive law and the freeness of an algebra of elementary embeddings, Advances in Mathematics 91 (1992), 209-231. (1992) Zbl0822.03030MR1149623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.