Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
Emil Jeřábek; Tomáš Kepka; David Stanovský
Discussiones Mathematicae - General Algebra and Applications (2005)
- Volume: 25, Issue: 2, page 235-257
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topEmil Jeřábek, Tomáš Kepka, and David Stanovský. "Subdirectly irreducible non-idempotent left symmetric left distributive groupoids." Discussiones Mathematicae - General Algebra and Applications 25.2 (2005): 235-257. <http://eudml.org/doc/287712>.
@article{EmilJeřábek2005,
abstract = {We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.},
author = {Emil Jeřábek, Tomáš Kepka, David Stanovský},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {groupoid; left distributive; left symmetric; subdirectly irreducible; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids},
language = {eng},
number = {2},
pages = {235-257},
title = {Subdirectly irreducible non-idempotent left symmetric left distributive groupoids},
url = {http://eudml.org/doc/287712},
volume = {25},
year = {2005},
}
TY - JOUR
AU - Emil Jeřábek
AU - Tomáš Kepka
AU - David Stanovský
TI - Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2005
VL - 25
IS - 2
SP - 235
EP - 257
AB - We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.
LA - eng
KW - groupoid; left distributive; left symmetric; subdirectly irreducible; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids
UR - http://eudml.org/doc/287712
ER -
References
top- [1] S. Burris and H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer 1981. Zbl0478.08001
- [2] P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel 2000. Zbl0958.20033
- [3] D. Joyce, Simple quandles, J. Algebra 79 (1982), 307-318. Zbl0514.20018
- [4] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186. Zbl0807.20057
- [5] T. Kepka and P. Nemec, Selfdistributive groupoids. A1. Non-indempotent left distributive groupoids, Acta Univ. Carolin. Math. Phys. 44/1 (2003), 3-94. Zbl1080.20060
- [6] H. Nagao, A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352. Zbl0417.20028
- [7] B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math. 32/3 (1999), 469-484. Zbl0951.20050
- [8] D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf.
- [9] D. Stanovský, Left symmetric left distributive operations on a group, Algebra Universalis 54/1 (2003), 97-103. Zbl1085.20043
- [10] M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal 49 (1943), 143-207 (Japanese).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.