Subdirectly irreducible non-idempotent left symmetric left distributive groupoids

Emil Jeřábek; Tomáš Kepka; David Stanovský

Discussiones Mathematicae - General Algebra and Applications (2005)

  • Volume: 25, Issue: 2, page 235-257
  • ISSN: 1509-9415

Abstract

top
We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.

How to cite

top

Emil Jeřábek, Tomáš Kepka, and David Stanovský. "Subdirectly irreducible non-idempotent left symmetric left distributive groupoids." Discussiones Mathematicae - General Algebra and Applications 25.2 (2005): 235-257. <http://eudml.org/doc/287712>.

@article{EmilJeřábek2005,
abstract = {We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.},
author = {Emil Jeřábek, Tomáš Kepka, David Stanovský},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {groupoid; left distributive; left symmetric; subdirectly irreducible; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids},
language = {eng},
number = {2},
pages = {235-257},
title = {Subdirectly irreducible non-idempotent left symmetric left distributive groupoids},
url = {http://eudml.org/doc/287712},
volume = {25},
year = {2005},
}

TY - JOUR
AU - Emil Jeřábek
AU - Tomáš Kepka
AU - David Stanovský
TI - Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2005
VL - 25
IS - 2
SP - 235
EP - 257
AB - We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.
LA - eng
KW - groupoid; left distributive; left symmetric; subdirectly irreducible; left distributive groupoids; left symmetric groupoids; subdirectly irreducible groupoids
UR - http://eudml.org/doc/287712
ER -

References

top
  1. [1] S. Burris and H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer 1981. Zbl0478.08001
  2. [2] P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel 2000. Zbl0958.20033
  3. [3] D. Joyce, Simple quandles, J. Algebra 79 (1982), 307-318. Zbl0514.20018
  4. [4] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186. Zbl0807.20057
  5. [5] T. Kepka and P. Nemec, Selfdistributive groupoids. A1. Non-indempotent left distributive groupoids, Acta Univ. Carolin. Math. Phys. 44/1 (2003), 3-94. Zbl1080.20060
  6. [6] H. Nagao, A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352. Zbl0417.20028
  7. [7] B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math. 32/3 (1999), 469-484. Zbl0951.20050
  8. [8] D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf. 
  9. [9] D. Stanovský, Left symmetric left distributive operations on a group, Algebra Universalis 54/1 (2003), 97-103. Zbl1085.20043
  10. [10] M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal 49 (1943), 143-207 (Japanese). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.