Interpolation theory and measures related to operator ideals
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 93-118
Access Full Article
topAbstract
topHow to cite
topCobos, Fernando. "Interpolation theory and measures related to operator ideals." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 93-118. <http://eudml.org/doc/220269>.
@inProceedings{Cobos1999,
abstract = {Given any operator ideal $\mathcal \{I\}$, there are two natural functionals $\gamma _\{\mathcal \{I\}\}(T)$, $\beta _\{\mathcal \{I\}\}(T)$ that one can use to show the deviation of the operator $T$ to the closed surjective hull of $\mathcal \{I\}$ and to the closed injective hull of $\mathcal \{I\}$, respectively. We describe the behaviour under interpolation of $\gamma _\{\mathcal \{I\}\}$ and $\beta _\{\mathcal \{I\}\}$. The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.},
author = {Cobos, Fernando},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {93-118},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Interpolation theory and measures related to operator ideals},
url = {http://eudml.org/doc/220269},
year = {1999},
}
TY - CLSWK
AU - Cobos, Fernando
TI - Interpolation theory and measures related to operator ideals
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 93
EP - 118
AB - Given any operator ideal $\mathcal {I}$, there are two natural functionals $\gamma _{\mathcal {I}}(T)$, $\beta _{\mathcal {I}}(T)$ that one can use to show the deviation of the operator $T$ to the closed surjective hull of $\mathcal {I}$ and to the closed injective hull of $\mathcal {I}$, respectively. We describe the behaviour under interpolation of $\gamma _{\mathcal {I}}$ and $\beta _{\mathcal {I}}$. The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/220269
ER -
References
top- Aksoy A. G., Maligranda L., Real interpolation and measure of weak noncompactness, Math. Nachr. 175 (1995), 5–12. (1995) Zbl0843.46013MR1355009
- Astala K., On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes 29 (1980), 1–42. (1980) MR0575533
- Astala K., Tylli H.-O., Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), 367–375. (1990) Zbl0709.47009MR1027789
- Beauzamy B., Espaces d’Interpolation Réels: Topologie et Géométrie, Springer-Verlag, Lecture Notes in Math. 666, Berlin 1978. (1978) Zbl0382.46021MR0513228
- Bergh J., Löfström J., Interpolation spaces. An Introduction, Springer-Verlag, Berlin 1976. (1976) Zbl0344.46071MR0482275
- Beucher O. J., On interpolation of strictly (co-)singular linear operators, Proc. Royal Soc. Edinburgh 112 A (1989), 263–269. (1989) Zbl0691.46048MR1014656
- Cobos F., Edmunds D. E., Potter A. J. B., Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351–365. (1990) Zbl0704.46049MR1038446
- Cobos F., Fernandez D. L., On interpolation of compact operators, Ark. Mat. 27 (1989), 211–217. (1989) Zbl0691.46047MR1022277
- Cobos F., Martínez P. Fernández,- Martínez A., Interpolation of the measure of non-compactness by the real method, , preprint.
- Cobos F., Kühn T., Schonbek T., One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), 274–313. (1992) Zbl0787.46061MR1165856
- Cobos F., Manzano A., Martínez A., Interpolation theory and measures related to operator ideals, , preprint. Zbl0945.46009
- Cobos F., Martínez A., Remarks on interpolation properties of the measure of weak non-compactness and ideal variations, To appear in Math. Nachr. Zbl0944.46012MR1719795
- Cobos F., Martínez A., Extreme estimates for interpolated operators by the real method, To appear in J. London Math. Soc. Zbl0940.46011MR1753819
- Cobos F., Peetre J., Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220–240. (1989) Zbl0716.46054MR1035891
- Cwikel M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333–343. (1992) Zbl0787.46062MR1150590
- Davis W. J., Figiel T., Johnson W. B., Pelczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327. (1974) MR0355536
- Blasi F. S. De, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21 (1977), 259–262. (1977) Zbl0365.46015MR0482402
- González M., Saksman E., Tylli H.-O., Representing non-weakly compact operators, Studia Math. 113 (1995), 265–282. (1995) Zbl0832.47039MR1330211
- Heinrich S., Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397–411. (1980) Zbl0439.47029MR0563562
- Jarchow H., Matter U., Interpolative constructions for operator ideals, Note Mat. 8 (1988), 45–56. (1988) Zbl0712.47039MR1050508
- Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon, Oxford 1982. (1982) Zbl0484.46003MR0664597
- skii M. A. Krasnosel,’, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229–231. (1960) MR0119086
- skii M. A. Krasnosel,’ Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integral operators in spaces of summable functions, Noordhoff Inter. Publ., Leyden 1976. (1976) MR0385645
- Lebow A., Schechter M., Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971), 1–26. (1971) MR0273422
- [unknown], ,,
- Lions J. L., Peetre J., Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68. (1964) Zbl0148.11403MR0165343
- Maligranda L., Quevedo A., Interpolation of weakly compact operators, Arch. Math. 55 (1990), 280–284. (1990) Zbl0696.46049MR1075053
- Mastylo M., On interpolation of weakly compact operators, Hokkaido Math. J. 22 (1993), 105–114. (1993) Zbl0789.46061MR1226586
- Neidinger R. D., Factoring operators through hereditarily- spaces, In: Banach Spaces, Proc. Conf. Columbia /Mo. 1984, Lecture Notes in Math. 1166, Springer-Verlag, Berlin 1985, 116–128. (1984) MR0827767
- Neidinger R. D., Concepts in the real interpolation of Banach spaces, Longhorn Notes of the Univ. of Texas at Austin, Funct. Anal. Seminar 1986–1987, 1–15. (1986) MR0967087
- Pelczyński A., On strictly singular and strictly cosingular operator. I: Strictly singular and strictly cosingular operators in -spaces, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 13 (1965), 31–41. (1965) MR0177300
- Pietsch A., Operator Ideals, North-Holland, Amsterdam 1980. (1980) Zbl0455.47032MR0582655
- Rosenthal H. P., A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. USA 71 (1974), 2411–2413. (1974) MR0358307
- Teixeira M. F., Edmunds D. E., Interpolation theory and measure of non-compactness, Math. Nachr. 104 (1981), 129–135. (1981) MR0657887
- Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam 1978. (1978) Zbl0387.46033MR0503903
- Tylli H.-O., The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995), 93–110. (1995) Zbl0838.47010MR1348307
- Weis L., On the surjective (injective) envelope of strictly (co-)singular operators, Studia Math. 54 (1976), 285–290. (1976) Zbl0323.47016MR0399908
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.