Interpolation theory and measures related to operator ideals

Cobos, Fernando

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 93-118

Abstract

top
Given any operator ideal , there are two natural functionals γ ( T ) , β ( T ) that one can use to show the deviation of the operator T to the closed surjective hull of and to the closed injective hull of , respectively. We describe the behaviour under interpolation of γ and β . The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.

How to cite

top

Cobos, Fernando. "Interpolation theory and measures related to operator ideals." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 93-118. <http://eudml.org/doc/220269>.

@inProceedings{Cobos1999,
abstract = {Given any operator ideal $\mathcal \{I\}$, there are two natural functionals $\gamma _\{\mathcal \{I\}\}(T)$, $\beta _\{\mathcal \{I\}\}(T)$ that one can use to show the deviation of the operator $T$ to the closed surjective hull of $\mathcal \{I\}$ and to the closed injective hull of $\mathcal \{I\}$, respectively. We describe the behaviour under interpolation of $\gamma _\{\mathcal \{I\}\}$ and $\beta _\{\mathcal \{I\}\}$. The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.},
author = {Cobos, Fernando},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {93-118},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Interpolation theory and measures related to operator ideals},
url = {http://eudml.org/doc/220269},
year = {1999},
}

TY - CLSWK
AU - Cobos, Fernando
TI - Interpolation theory and measures related to operator ideals
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 93
EP - 118
AB - Given any operator ideal $\mathcal {I}$, there are two natural functionals $\gamma _{\mathcal {I}}(T)$, $\beta _{\mathcal {I}}(T)$ that one can use to show the deviation of the operator $T$ to the closed surjective hull of $\mathcal {I}$ and to the closed injective hull of $\mathcal {I}$, respectively. We describe the behaviour under interpolation of $\gamma _{\mathcal {I}}$ and $\beta _{\mathcal {I}}$. The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/220269
ER -

References

top
  1. Aksoy A. G., Maligranda L., Real interpolation and measure of weak noncompactness, Math. Nachr. 175 (1995), 5–12. (1995) Zbl0843.46013MR1355009
  2. Astala K., On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes 29 (1980), 1–42. (1980) MR0575533
  3. Astala K., Tylli H.-O., Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), 367–375. (1990) Zbl0709.47009MR1027789
  4. Beauzamy B., Espaces d’Interpolation Réels: Topologie et Géométrie, Springer-Verlag, Lecture Notes in Math. 666, Berlin 1978. (1978) Zbl0382.46021MR0513228
  5. Bergh J., Löfström J., Interpolation spaces. An Introduction, Springer-Verlag, Berlin 1976. (1976) Zbl0344.46071MR0482275
  6. Beucher O. J., On interpolation of strictly (co-)singular linear operators, Proc. Royal Soc. Edinburgh 112 A (1989), 263–269. (1989) Zbl0691.46048MR1014656
  7. Cobos F., Edmunds D. E., Potter A. J. B., Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351–365. (1990) Zbl0704.46049MR1038446
  8. Cobos F., Fernandez D. L., On interpolation of compact operators, Ark. Mat. 27 (1989), 211–217. (1989) Zbl0691.46047MR1022277
  9. Cobos F., Martínez P. Fernández,- Martínez A., Interpolation of the measure of non-compactness by the real method, , preprint. 
  10. Cobos F., Kühn T., Schonbek T., One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), 274–313. (1992) Zbl0787.46061MR1165856
  11. Cobos F., Manzano A., Martínez A., Interpolation theory and measures related to operator ideals, , preprint. Zbl0945.46009
  12. Cobos F., Martínez A., Remarks on interpolation properties of the measure of weak non-compactness and ideal variations, To appear in Math. Nachr. Zbl0944.46012MR1719795
  13. Cobos F., Martínez A., Extreme estimates for interpolated operators by the real method, To appear in J. London Math. Soc. Zbl0940.46011MR1753819
  14. Cobos F., Peetre J., Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220–240. (1989) Zbl0716.46054MR1035891
  15. Cwikel M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333–343. (1992) Zbl0787.46062MR1150590
  16. Davis W. J., Figiel T., Johnson W. B., Pelczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327. (1974) MR0355536
  17. Blasi F. S. De, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21 (1977), 259–262. (1977) Zbl0365.46015MR0482402
  18. González M., Saksman E., Tylli H.-O., Representing non-weakly compact operators, Studia Math. 113 (1995), 265–282. (1995) Zbl0832.47039MR1330211
  19. Heinrich S., Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397–411. (1980) Zbl0439.47029MR0563562
  20. Jarchow H., Matter U., Interpolative constructions for operator ideals, Note Mat. 8 (1988), 45–56. (1988) Zbl0712.47039MR1050508
  21. Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon, Oxford 1982. (1982) Zbl0484.46003MR0664597
  22. skii M. A. Krasnosel,’, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229–231. (1960) MR0119086
  23. skii M. A. Krasnosel,’ Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integral operators in spaces of summable functions, Noordhoff Inter. Publ., Leyden 1976. (1976) MR0385645
  24. Lebow A., Schechter M., Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971), 1–26. (1971) MR0273422
  25. [unknown], ,, 
  26. Lions J. L., Peetre J., Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68. (1964) Zbl0148.11403MR0165343
  27. Maligranda L., Quevedo A., Interpolation of weakly compact operators, Arch. Math. 55 (1990), 280–284. (1990) Zbl0696.46049MR1075053
  28. Mastylo M., On interpolation of weakly compact operators, Hokkaido Math. J. 22 (1993), 105–114. (1993) Zbl0789.46061MR1226586
  29. Neidinger R. D., Factoring operators through hereditarily- p spaces, In: Banach Spaces, Proc. Conf. Columbia /Mo. 1984, Lecture Notes in Math. 1166, Springer-Verlag, Berlin 1985, 116–128. (1984) MR0827767
  30. Neidinger R. D., Concepts in the real interpolation of Banach spaces, Longhorn Notes of the Univ. of Texas at Austin, Funct. Anal. Seminar 1986–1987, 1–15. (1986) MR0967087
  31. Pelczyński A., On strictly singular and strictly cosingular operator. I: Strictly singular and strictly cosingular operators in C ( S ) -spaces, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 13 (1965), 31–41. (1965) MR0177300
  32. Pietsch A., Operator Ideals, North-Holland, Amsterdam 1980. (1980) Zbl0455.47032MR0582655
  33. Rosenthal H. P., A characterization of Banach spaces containing 1 , Proc. Nat. Acad. Sci. USA 71 (1974), 2411–2413. (1974) MR0358307
  34. Teixeira M. F., Edmunds D. E., Interpolation theory and measure of non-compactness, Math. Nachr. 104 (1981), 129–135. (1981) MR0657887
  35. Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam 1978. (1978) Zbl0387.46033MR0503903
  36. Tylli H.-O., The essential norm of an operator is not self-dual, Israel J. Math. 91 (1995), 93–110. (1995) Zbl0838.47010MR1348307
  37. Weis L., On the surjective (injective) envelope of strictly (co-)singular operators, Studia Math. 54 (1976), 285–290. (1976) Zbl0323.47016MR0399908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.