Representing non-weakly compact operators

Manuel González; Eero Saksman; Hans-Olav Tylli

Studia Mathematica (1995)

  • Volume: 113, Issue: 3, page 265-282
  • ISSN: 0039-3223

Abstract

top
For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically with the class of lattice regular operators on 2 for E = 2 ( J ) (here J is James’ space). Accordingly, there is an operator T L ( 2 ( J ) ) such that R(T) is invertible but T fails to be invertible modulo W ( 2 ( J ) ) .

How to cite

top

González, Manuel, Saksman, Eero, and Tylli, Hans-Olav. "Representing non-weakly compact operators." Studia Mathematica 113.3 (1995): 265-282. <http://eudml.org/doc/216174>.

@article{González1995,
abstract = {For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of $L^1$ and C(0,1), but R(L(E)/W(E)) identifies isometrically with the class of lattice regular operators on $ℓ^2$ for $E = ℓ^2(J)$ (here J is James’ space). Accordingly, there is an operator $T ∈ L(ℓ^2(J))$ such that R(T) is invertible but T fails to be invertible modulo $W(ℓ^2(J))$.},
author = {González, Manuel, Saksman, Eero, Tylli, Hans-Olav},
journal = {Studia Mathematica},
keywords = {representation; weak Calkin algebra; weakly compact operators; lattice regular operators},
language = {eng},
number = {3},
pages = {265-282},
title = {Representing non-weakly compact operators},
url = {http://eudml.org/doc/216174},
volume = {113},
year = {1995},
}

TY - JOUR
AU - González, Manuel
AU - Saksman, Eero
AU - Tylli, Hans-Olav
TI - Representing non-weakly compact operators
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 3
SP - 265
EP - 282
AB - For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of $L^1$ and C(0,1), but R(L(E)/W(E)) identifies isometrically with the class of lattice regular operators on $ℓ^2$ for $E = ℓ^2(J)$ (here J is James’ space). Accordingly, there is an operator $T ∈ L(ℓ^2(J))$ such that R(T) is invertible but T fails to be invertible modulo $W(ℓ^2(J))$.
LA - eng
KW - representation; weak Calkin algebra; weakly compact operators; lattice regular operators
UR - http://eudml.org/doc/216174
ER -

References

top
  1. [AB] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, 1985. 
  2. [AG] T. Alvarez and M. González, Some examples of tauberian operators, Proc. Amer. Math. Soc. 111 (1991), 1023-1027. Zbl0733.47017
  3. [A] K. Astala, On measures of noncompactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 29 (1980), 1-42. Zbl0426.47001
  4. [AT] K. Astala and H.-O. Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), 367-375. Zbl0709.47009
  5. [B] J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1983), 193-216. Zbl0533.46035
  6. [BK] J. Buoni and A. Klein, The generalized Calkin algebra, Pacific J. Math. 80 (1979), 9-12. Zbl0409.47009
  7. [DEJP] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. Zbl0306.46020
  8. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Vol. 1, Interscience, 1958. 
  9. [GJ] D. P. Giesy and R. C. James, Uniformly non- ( 1 ) and B-convex Banach spaces, Studia Math. 48 (1973), 61-69. 
  10. [G] M. González, Dual results of factorization for operators, Ann. Acad. Sci. Fenn. A I Math. 18 (1993), 3-11. Zbl0795.46013
  11. [GM] M. González and A. Martinón, Operational quantities derived from the norm and measures of noncompactness, Proc. Roy. Irish Acad. 91A (1991), 63-70. Zbl0760.47021
  12. [HWW] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, 1993. 
  13. [K] S. V. Kisljakov, On the conditions of Dunford-Pettis, Pełczyński and Grothendieck, Soviet Math. Dokl. 16 (1975), 1616-1621. Zbl0346.46013
  14. [LS] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26. Zbl0209.45002
  15. [L] D. H. Leung, Banach spaces with property (w), Glasgow Math. J. 35 (1993), 207-217. Zbl0785.46023
  16. [LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338, Springer, 1973. Zbl0259.46011
  17. [LT2] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, 1977. Zbl0362.46013
  18. [LW] R. J. Loy and G. A. Willis, Continuity of derivations on B(E) for certain Banach spaces E, J. London Math. Soc. 40 (1989), 327-346. Zbl0651.47035
  19. [M] M. J. Meyer, On a topological property of certain Calkin algebras, Bull. London Math. Soc. 24 (1992), 591-598. Zbl0785.46046
  20. [P1] A. Pełczyński, Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
  21. [P2] A. Pełczyński, On strictly singular and strictly cosingular operators I, II, ibid. 13 (1965), 31-41. Zbl0138.38604
  22. [Pf] H. Pfitzner, Weak compactness in the dual of a C*-algebra is determined commutatively, Math. Ann. 298 (1994), 349-371. Zbl0791.46035
  23. [Pi] A. Pietsch, Operator Ideals, North-Holland, 1980. 
  24. [R] F. Räbiger, Absolutstetigkeit und Ordnungsabsolutstetigkeit von Operatoren, Sitzungsber. Heidelberger Akad. Wiss., Springer, 1991. Zbl0729.47034
  25. [Re] C. J. Read, Discontinuous derivations on the algebra of bounded operators on a Banach space, J. London Math. Soc. 40 (1989), 305-326. Zbl0722.46020
  26. [S] H. H. Schaefer, On the o-spectrum of order bounded operators, Math. Z. 154 (1977), 79-84. Zbl0335.47023
  27. [T1] H.-O. Tylli, A spectral radius problem connected with weak compactness, Glasgow Math. J. 35 (1993), 85-94. Zbl0781.47011
  28. [T2] H.-O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math., to appear. 
  29. [V] M. Valdivia, Banach spaces X with X** separable, ibid. 59 (1987), 107-111. Zbl0635.46014
  30. [W] L. Weis, Über schwach folgenpräkompakte Operatoren, Arch. Math. (Basel) 30 (1978), 411-417. Zbl0424.47016
  31. [WW] L. Weis and M. Wolff, On the essential spectrum of operators on L 1 , Seminarberichte Tübingen (Sommersemester 1984), 103-112. 
  32. [Wo] M. Wojtowicz, On the James space J(X) for a Banach space X, Comment. Math. Prace Mat. 23 (1983), 183-188. Zbl0594.46016
  33. [Y1] K.-W. Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 216 (1976), 313-326. Zbl0297.47027
  34. [Y2] K.-W. Yang, Operators invertible modulo the weakly compact operators, Pacific J. Math. 71 (1977), 559-564. Zbl0359.47019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.