On the shape of solutions to some variational problems

Kawohl, Bernd

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Prometheus Publishing House(Praha), page 77-102

How to cite

top

Kawohl, Bernd. "On the shape of solutions to some variational problems." Nonlinear Analysis, Function Spaces and Applications. Praha: Prometheus Publishing House, 1994. 77-102. <http://eudml.org/doc/220821>.

@inProceedings{Kawohl1994,
author = {Kawohl, Bernd},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)},
location = {Praha},
pages = {77-102},
publisher = {Prometheus Publishing House},
title = {On the shape of solutions to some variational problems},
url = {http://eudml.org/doc/220821},
year = {1994},
}

TY - CLSWK
AU - Kawohl, Bernd
TI - On the shape of solutions to some variational problems
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1994
CY - Praha
PB - Prometheus Publishing House
SP - 77
EP - 102
KW - Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)
UR - http://eudml.org/doc/220821
ER -

References

top
  1. Boussinesq, J., Étude nouvelle sur l’equilibre et le movement des corp solides élastiques dont certaines dimensions sont très-petit per rapport à d’autres, J. Math. Pures Appl. 16 (1871), 125–274. (1871) 
  2. Buttazzo, G., Ferone, V., Kawohl, B., Minimum problems over sets of concave functions and related questions, Preprint 93–55, Institut für Wissenschaftliches Rechnen und SFB 359, Heidelberg, submitted to Math. Nachr.. Zbl0835.49001MR1336954
  3. Buttazzo, G, Kawohl, B., On Newton’s problem of minimal resistance, Math. Intelligencer 15 (1993), no. 4, 7–12. (1993) Zbl0800.49038MR1240664
  4. Chipot, M., Evans, L.C., Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh 102 A (1986), 291–303. (1986) MR0852362
  5. Feistaue, M., Nečas, J., On the solvability of transonic potential flow problems, Z. Anal. Anwend. 4 (1985), 305–329. (1985) MR0807140
  6. Ferone, V., Posteraro, M.R., Volpicelli, R., An inequality concerning rearrangements of functions and Hamilton Jacobi equations, Arch. Rational Mech. Anal. 125 (1993), 257–269. (1993) Zbl0787.35020MR1245072
  7. Filon, L.N.G., On the resistance to torsion of certain forms of shafting, with special reference to the effect of keyways, Philos. Trans. Roy. Soc. London Ser. A 193 (1900), 309–352. (1900) 
  8. Kawohl, B., On the location of maxima of the gradient for solutions to quasilinear elliptic problems and a problem raised by Saint Venant, J. Elasticity 17 (1987), 195–206. (1987) Zbl0624.73011MR0888315
  9. Kawohl, B., Schwab, C., Convergent finite elements for a class of nonconvex variational problems, Preprint 94–10, Institut für Wissenschaftliches Rechnen und SFB 359, Heidelberg, submitted to Numer. Math.. Zbl0908.65052MR1492052
  10. Kawohl, B., Stará, J., Wittum, G., Analysis and numerical studies of a shape design problem, Arch. Rational Mech. Anal. 114 (1991), 349–363. (1991) MR1100800
  11. Kosmodem’yanskii Jr, A.A., The behaviour of solutions for the equation Δ u = - 1 in convex domains, Soviet Math. Dokl. 39 (1989), 112–114. (1989) 
  12. Marcellini, P., Nonconvex integrals of the calculus of variations, Methods of Nonconvex Analysis, A. Cellina (ed.), Springer Lecture Notes in Math. 1446, 1990, pp. 16–57. (1990) MR1079758
  13. Makar-Limanov, L.G., Solution of Dirichlet’s problem for the equation Δ u = - 1 in a convex region, Math. Notes 9 (1971), 195–206. (1971) Zbl0222.31004MR0279321
  14. Newton, I., Philisophiae Naturalis Principia Mathematica, 1686. (1686) 
  15. Polya, G., Liegt die Stelle der größten Beanspruchung an der Oberfläche?, Z. Angew. Math. Mech. 10 (1930), 353–360. (1930) 
  16. Polya, G., Szegö, G., Isoperimetric Inequalities in Mathematical Physics, Ann. of Math. Stud. 27 (1951), Princeton Univ. Press. (1951) MR0043486
  17. Ramaswamy, M., A counterexample to the conjecture of Saint Venant by reflection methods, Differential Integral Equations 3 (1990), 653–662. (1990) MR1044211
  18. Serrin, J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Phil. Trans. Roy. Soc. London Ser A 264 (1969), 413–496. (1969) Zbl0181.38003MR0282058
  19. Sweers, G., A counterexample with convex domain to a conjecture of De Saint Venant, J. Elasticity 22 (1989), 57–61. (1989) Zbl0693.73005MR1022331
  20. Sweers, G., On examples to a conjecture of De Saint Venant, Nonlinear Anal. 18 (1992), 889–991. (1992) Zbl0794.73027MR1162480
  21. Saint Venant, B. de, Mémoire sur la torsion des prismes, avec des considérations sur leur flexion ainsi que sur l’équilibre intérieur des solides élastiques en général, et de formules pratiques pour le calcul de leur résistance á divers efforts s’exercant simultanément, Mémoires présentés par divers savants á l’Académie des sciences de l’institut impérial de France, 2 Sér. 14 (1856), 233–560. (1856) 
  22. Talenti, G., Non linear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. (4) 120 (1977), 159–184. (1977) MR0551065
  23. Thomson, W., Tait, P.G., Treatise on natural philosophy, 1st edn., Oxford, 1867. (1867) 
  24. Whiteside, D.T., The Mathematical Papers of Isaac Newton – Vol. VI, Cambridge University Press, London, 1974. (1974) Zbl0296.01007MR0505130

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.