Anisotropic symmetrization

Jean Van Schaftingen

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 539-565
  • ISSN: 0294-1449

How to cite

top

Van Schaftingen, Jean. "Anisotropic symmetrization." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 539-565. <http://eudml.org/doc/78701>.

@article{VanSchaftingen2006,
author = {Van Schaftingen, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetric rearrangement; Steiner symmetrization; convex symmetrization; Pólya-Szegő inequality; Riesz-Sobolev rearrangement inequality; isoperimetric inequality; Wulff's crystal; Hardy inequality; Sobolev inequality},
language = {eng},
number = {4},
pages = {539-565},
publisher = {Elsevier},
title = {Anisotropic symmetrization},
url = {http://eudml.org/doc/78701},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Van Schaftingen, Jean
TI - Anisotropic symmetrization
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 539
EP - 565
LA - eng
KW - symmetric rearrangement; Steiner symmetrization; convex symmetrization; Pólya-Szegő inequality; Riesz-Sobolev rearrangement inequality; isoperimetric inequality; Wulff's crystal; Hardy inequality; Sobolev inequality
UR - http://eudml.org/doc/78701
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., vol. 65, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] Alvino A., Ferone V., Trombetti G., Lions P.-L., Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (2) (1997) 275-293. Zbl0877.35040MR1441395
  3. [3] Alvino A., Trombetti G., Lions P.-L., On optimization problems with prescribed rearrangements, Nonlinear Anal.13 (2) (1989) 185-220. Zbl0678.49003MR979040
  4. [4] Baernstein A., A unified approach to symmetrization, in: Alvino A., (Eds.), Partial Equations of Elliptic Type, Sympos. Math., vol. 35, Cambridge University Press, Cambridge, 1995, pp. 47-49. Zbl0830.35005MR1297773
  5. [5] Brascamp H.J., Lieb E.H., Luttinger J.M., A general rearrangement inequality for multiple integrals, J. Funct. Anal.17 (1974) 227-237. Zbl0286.26005MR346109
  6. [6] Brock F., Solynin A.Yu., An approach to symmetrization via polarization, Trans. Amer. Math. Soc.352 (4) (2000) 1759-1796. Zbl0965.49001MR1695019
  7. [7] Burchard A., Cases of equality in the Riesz rearrangement inequality, Ann. of Math. (2)143 (3) (1996) 499-527. Zbl0876.26016MR1394967
  8. [8] Burchard A., Steiner symmetrization is continuous in W 1 , p , Geom. Funct. Anal.7 (5) (1997) 823-860. Zbl0912.46034MR1475547
  9. [9] Busemann H., The isoperimetric problem for Minkowski area, Amer. J. Math.71 (1949) 743-762. Zbl0038.10301MR31762
  10. [10] Crowe J.A., Rosenbloom P.C., Zweibel J.A., Rearrangements of functions, J. Funct. Anal.66 (1986) 432-438. Zbl0612.46027MR839110
  11. [11] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
  12. [12] Dacorogna B., Pfister C.-E., Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. (9)71 (2) (1992) 97-118. Zbl0676.46031MR1170247
  13. [13] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., vol. 1, North-Holland Publishing Co., Amsterdam, 1976. Zbl0322.90046MR463994
  14. [14] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  15. [15] Fonseca I., Müller S., A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A119 (1–2) (1991) 125-136. Zbl0752.49019MR1130601
  16. [16] Kawohl B., On the shape of solutions to some variational problems, in: Nonlinear Analysis, Function Spaces and Applications, vol. 5, Prague, 1994, Prometheus, Prague, 1994, pp. 77-102. Zbl0841.49022MR1322310
  17. [17] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  18. [18] Klimov V.S., On the symmetrization of anisotropic integral functionals, Izv. Vyssh. Uchebn. Zaved. Mat. (8) (1999) 26-32. Zbl1011.31003MR1730536
  19. [19] Lieb E.H., Loss M., Analysis, Grad. Stud. Math., vol. 14, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
  20. [20] Lions P.-L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal.49 (3) (1982) 315-334. Zbl0501.46032MR683027
  21. [21] Mossino J., Inégalités isopérimétriques et applications en physique, Travaux en cours, Hermann, Paris, 1984. Zbl0537.35002MR733257
  22. [22] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, NJ, 1951. Zbl0044.38301MR43486
  23. [23] Sarvas J., Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn., Ser. A I522 (1972) 1-44. Zbl0245.30013MR348108
  24. [24] Stromberg K.R., Probability for Analysts, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994, Lecture notes prepared by Kuppusamy Ravindran. Zbl0803.60001MR1271144
  25. [25] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4)110 (1976) 353-372. Zbl0353.46018MR463908
  26. [26] Talenti G., On isoperimetric theorems of mathematical physics, in: Gruber P.M., Wills J. (Eds.), Handbook of Convex Geometry B, Elsevier Science, Amsterdam, 1993, pp. 1131-1147. Zbl0804.35005MR1243005
  27. [27] Taylor J.E., Crystalline variational problems, Bull. Amer. Math. Soc.84 (4) (1978) 568-588. Zbl0392.49022MR493671
  28. [28] Van Schaftingen J., Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc.134 (1) (2006) 177-186. Zbl1093.26012MR2170557
  29. [29] Van Schaftingen J., Willem M., Set transformations, symmetrizations and isoperimetric inequalities, in: Benci V., Masiello A. (Eds.), Nonlinear Analysis and Applications to the Physical Sciences, Springer, 2004, pp. 135-152. Zbl06143115MR2085832
  30. [30] Willem M., Analyse fonctionnelle élémentaire, Cassini, Paris, 2003. Zbl1089.46001
  31. [31] Ziemer W.P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math., vol. 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.