Anisotropic symmetrization
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 4, page 539-565
- ISSN: 0294-1449
Access Full Article
topHow to cite
topVan Schaftingen, Jean. "Anisotropic symmetrization." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 539-565. <http://eudml.org/doc/78701>.
@article{VanSchaftingen2006,
author = {Van Schaftingen, Jean},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetric rearrangement; Steiner symmetrization; convex symmetrization; Pólya-Szegő inequality; Riesz-Sobolev rearrangement inequality; isoperimetric inequality; Wulff's crystal; Hardy inequality; Sobolev inequality},
language = {eng},
number = {4},
pages = {539-565},
publisher = {Elsevier},
title = {Anisotropic symmetrization},
url = {http://eudml.org/doc/78701},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Van Schaftingen, Jean
TI - Anisotropic symmetrization
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 539
EP - 565
LA - eng
KW - symmetric rearrangement; Steiner symmetrization; convex symmetrization; Pólya-Szegő inequality; Riesz-Sobolev rearrangement inequality; isoperimetric inequality; Wulff's crystal; Hardy inequality; Sobolev inequality
UR - http://eudml.org/doc/78701
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., vol. 65, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] Alvino A., Ferone V., Trombetti G., Lions P.-L., Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (2) (1997) 275-293. Zbl0877.35040MR1441395
- [3] Alvino A., Trombetti G., Lions P.-L., On optimization problems with prescribed rearrangements, Nonlinear Anal.13 (2) (1989) 185-220. Zbl0678.49003MR979040
- [4] Baernstein A., A unified approach to symmetrization, in: Alvino A., (Eds.), Partial Equations of Elliptic Type, Sympos. Math., vol. 35, Cambridge University Press, Cambridge, 1995, pp. 47-49. Zbl0830.35005MR1297773
- [5] Brascamp H.J., Lieb E.H., Luttinger J.M., A general rearrangement inequality for multiple integrals, J. Funct. Anal.17 (1974) 227-237. Zbl0286.26005MR346109
- [6] Brock F., Solynin A.Yu., An approach to symmetrization via polarization, Trans. Amer. Math. Soc.352 (4) (2000) 1759-1796. Zbl0965.49001MR1695019
- [7] Burchard A., Cases of equality in the Riesz rearrangement inequality, Ann. of Math. (2)143 (3) (1996) 499-527. Zbl0876.26016MR1394967
- [8] Burchard A., Steiner symmetrization is continuous in , Geom. Funct. Anal.7 (5) (1997) 823-860. Zbl0912.46034MR1475547
- [9] Busemann H., The isoperimetric problem for Minkowski area, Amer. J. Math.71 (1949) 743-762. Zbl0038.10301MR31762
- [10] Crowe J.A., Rosenbloom P.C., Zweibel J.A., Rearrangements of functions, J. Funct. Anal.66 (1986) 432-438. Zbl0612.46027MR839110
- [11] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
- [12] Dacorogna B., Pfister C.-E., Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. (9)71 (2) (1992) 97-118. Zbl0676.46031MR1170247
- [13] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., vol. 1, North-Holland Publishing Co., Amsterdam, 1976. Zbl0322.90046MR463994
- [14] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [15] Fonseca I., Müller S., A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A119 (1–2) (1991) 125-136. Zbl0752.49019MR1130601
- [16] Kawohl B., On the shape of solutions to some variational problems, in: Nonlinear Analysis, Function Spaces and Applications, vol. 5, Prague, 1994, Prometheus, Prague, 1994, pp. 77-102. Zbl0841.49022MR1322310
- [17] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
- [18] Klimov V.S., On the symmetrization of anisotropic integral functionals, Izv. Vyssh. Uchebn. Zaved. Mat. (8) (1999) 26-32. Zbl1011.31003MR1730536
- [19] Lieb E.H., Loss M., Analysis, Grad. Stud. Math., vol. 14, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
- [20] Lions P.-L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal.49 (3) (1982) 315-334. Zbl0501.46032MR683027
- [21] Mossino J., Inégalités isopérimétriques et applications en physique, Travaux en cours, Hermann, Paris, 1984. Zbl0537.35002MR733257
- [22] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, NJ, 1951. Zbl0044.38301MR43486
- [23] Sarvas J., Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn., Ser. A I522 (1972) 1-44. Zbl0245.30013MR348108
- [24] Stromberg K.R., Probability for Analysts, Chapman & Hall Probability Series, Chapman & Hall, New York, 1994, Lecture notes prepared by Kuppusamy Ravindran. Zbl0803.60001MR1271144
- [25] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4)110 (1976) 353-372. Zbl0353.46018MR463908
- [26] Talenti G., On isoperimetric theorems of mathematical physics, in: Gruber P.M., Wills J. (Eds.), Handbook of Convex Geometry B, Elsevier Science, Amsterdam, 1993, pp. 1131-1147. Zbl0804.35005MR1243005
- [27] Taylor J.E., Crystalline variational problems, Bull. Amer. Math. Soc.84 (4) (1978) 568-588. Zbl0392.49022MR493671
- [28] Van Schaftingen J., Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc.134 (1) (2006) 177-186. Zbl1093.26012MR2170557
- [29] Van Schaftingen J., Willem M., Set transformations, symmetrizations and isoperimetric inequalities, in: Benci V., Masiello A. (Eds.), Nonlinear Analysis and Applications to the Physical Sciences, Springer, 2004, pp. 135-152. Zbl06143115MR2085832
- [30] Willem M., Analyse fonctionnelle élémentaire, Cassini, Paris, 2003. Zbl1089.46001
- [31] Ziemer W.P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Grad. Texts in Math., vol. 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.