Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 2, page 401-426
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré, Anal. non linéaire13 (1996) 293-317.
- J.-P. Aubin, Viability Theory. Birkhäuser (1992).
- J.-P. Aubin and G. Da Prato, Stochastic viability and invariance. Ann. Sc. Norm. Pisa27 (1990) 595–694.
- J.-P. Aubin and H. Frankowska, Set Valued Analysis. Birkhäuser (1990).
- M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi- Bellman equations. Systems and Control : Foundations and Applications, Birkhäuser (1997).
- M. Bardi and P. Goatin, Invariant sets for controlled degenerate diffusions : a viscosity solutions approach, in Stochastic analysis, control, optimization and applications, Systems Control Found. Appl., Birkhäuser, Boston, MA (1999) 191–208.
- M. Bardi and R. Jensen, A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Anal.10 (2002) 129–141.
- G. Barles and C. Imbert, Second-order elliptic integro-differential equations : Viscosity solutions theory revisited. Ann. Inst. Henri Poincaré, Anal. non linéaire25 (2008) 567–585.
- G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM : M2AN36 (2002) 33–54.
- R. Buckdahn, S. Peng, M. Quincampoix and C. Rainer, Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 17–22.
- R. Buckdahn, D. Goreac and M. Quincampoix, Stochastic optimal control and linear programming approach. Appl. Math. Opt.63 (2011) 257–276.
- D.L. Cook, A.N. Gerber and S.J. Tapscott, Modelling stochastic gene expression : Implications for haploinsufficiency. Proc. Natl. Acad. Sci. USA95 (1998) 15641–15646.
- A. Crudu, A. Debussche and O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks. BMC Systems Biology3 (2009).
- M.H.A. Davis, Markov Models and Optimization, Monographs on Statistics and Applied probability49. Chapman & Hall (1993).
- M. Delbrück, Statistical fluctuations in autocatalytic reactions. J. Chem. Phys.8 (1940) 120–124.
- S. Gautier and L. Thibault, Viability for constrained stochastic differential equations. Differential Integral Equations6 (1993) 1395–1414.
- J. Hasty, J. Pradines, M. Dolnik and J.J. Collins, Noise-based switches and amplifiers for gene expression. PNAS97 (2000) 2075–2080.
- H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim.24 (1986) 1110–1122.
- X. Zhu and S. Peng, The viability property of controlled jump diffusion processes. Acta Math. Sinica24 (2008) 1351–1368.