On a Bernoulli problem with geometric constraints
Antoine Laurain; Yannick Privat
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 1, page 157-180
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Acker, An extremal problem involving current flow through distributed resistance. SIAM J. Math. Anal.12 (1981) 169–172.
- C. Atkinson and C.R. Champion, Some boundary-value problems for the equation ∇·(|∇ϕ| N∇ϕ) = 0. Quart. J. Mech. Appl. Math.37 (1984) 401–419.
- A. Beurling, On free boundary problems for the Laplace equation, Seminars on analytic functions1. Institute for Advanced Studies, Princeton (1957).
- F. Bouchon, S. Clain and R. Touzani, Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput. Methods Appl. Mech. Eng.194 (2005) 3934–3948.
- E.N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differ. Equ.138 (1997) 86–132.
- M.C. Delfour and J.-P. Zolésio, Shapes and geometries – Analysis, differential calculus, and optimization, Advances in Design and Control4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001).
- L.C. Evans, Partial differential equations, Graduate Studies in Mathematics19. American Mathematical Society, Providence (1998).
- A. Fasano, Some free boundary problems with industrial applications, in Shape optimization and free boundaries (Montreal, PQ, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.380, Kluwer Acad. Publ., Dordrecht (1992) 113–142.
- M. Flucher and M. Rumpf, Bernoulli’s free boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math.486 (1997) 165–204.
- A. Friedman, Free boundary problem in fluid dynamics, in Variational methods for equilibrium problems of fluids, Trento 1983, Astérisque118 (1984) 55–67.
- A. Friedman, Free boundary problems in science and technology. Notices Amer. Math. Soc.47 (2000) 854–861.
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics24. Pitman (Advanced Publishing Program), Boston (1985).
- J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type. Comp. Optim. Appl.26 (2003) 231–251.
- J. Haslinger, K. Ito, T. Kozubek, K. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type. Interfaces in Free Boundaries11 (2009) 317–330.
- A. Henrot and M. Pierre, Variation et optimisation de formes – Une analyse géométrique, Mathématiques & Applications48. Springer, Berlin (2005).
- A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator. I. The exterior convex case. J. Reine Angew. Math.521 (2000) 85–97.
- A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator. II. The interior convex case. Indiana Univ. Math. J.49 (2000) 311–323.
- A. Henrot and H. Shahgholian, The one phase free boundary problem for the p-Laplacian with non-constant Bernoulli boundary condition. Trans. Amer. Math. Soc.354 (2002) 2399–2416.
- K. Ito, K. Kunisch and G.H. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl.314 (2006) 126–149.
- C.T. Kelley, Iterative methods for optimization, Frontiers in Applied Mathematics18. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999).
- V.A. Kondratév, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč.16 (1967) 209–292.
- C.M. Kuster, P.A. Gremaud and R. Touzani, Fast numerical methods for Bernoulli free boundary problems. SIAM J. Sci. Comput.29 (2007) 622–634.
- J. Lamboley and A. Novruzi, Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim.48 (2009) 3003–3025.
- E. Lindgren and Y. Privat, A free boundary problem for the Laplacian with a constant Bernoulli-type boundary condition. Nonlinear Anal.67 (2007) 2497–2505.
- J. Nocedal and S.J. Wright, Numerical optimization. Springer Series in Operations Research and Financial Engineering, Springer, New York, 2nd edition (2006).
- J.R. Philip, n-diffusion. Austral. J. Phys.14 (1961) 1–13.
- J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization : Shape sensitivity analysis, Springer Series in Computational Mathematics16. Springer-Verlag, Berlin (1992).