# Approximate controllability by birth control for a nonlinear population dynamics model

ESAIM: Control, Optimisation and Calculus of Variations (2011)

- Volume: 17, Issue: 4, page 1198-1213
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topKavian, Otared, and Traoré, Oumar. "Approximate controllability by birth control for a nonlinear population dynamics model." ESAIM: Control, Optimisation and Calculus of Variations 17.4 (2011): 1198-1213. <http://eudml.org/doc/221912>.

@article{Kavian2011,

abstract = {
In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.
},

author = {Kavian, Otared, Traoré, Oumar},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Population dynamics; approximate controllability; characteristic lines; Heat equation; fixed point theorem; nonlinear population dynamics model; unique continuation; heat equation; Kakutani-Fan-Glicksberg fixed point theorem},

language = {eng},

month = {11},

number = {4},

pages = {1198-1213},

publisher = {EDP Sciences},

title = {Approximate controllability by birth control for a nonlinear population dynamics model},

url = {http://eudml.org/doc/221912},

volume = {17},

year = {2011},

}

TY - JOUR

AU - Kavian, Otared

AU - Traoré, Oumar

TI - Approximate controllability by birth control for a nonlinear population dynamics model

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2011/11//

PB - EDP Sciences

VL - 17

IS - 4

SP - 1198

EP - 1213

AB -
In this paper we analyse an approximate controllability result for a nonlinear population dynamics model. In this model the birth term is nonlocal and describes the recruitment process in newborn individuals population, and the control acts on a small open set of the domain and corresponds to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.

LA - eng

KW - Population dynamics; approximate controllability; characteristic lines; Heat equation; fixed point theorem; nonlinear population dynamics model; unique continuation; heat equation; Kakutani-Fan-Glicksberg fixed point theorem

UR - http://eudml.org/doc/221912

ER -

## References

top- B.E. Ainseba and M. Langlais, Sur un problème de contrôle d'une population structurée en âge et en espace. C. R. Acad. Sci. Paris Série I323 (1996) 269–274.
- S. Anita, Analysis and control of age-dependent population dynamics . Kluwer Academic Publishers (2000).
- J.P. Aubin, L'analyse non linéaire et ses motivations économiques . Masson, Paris (1984).
- V. Barbu, M. Ianneli and M Martcheva, On the controllability of the Lotka-McKendrick model of population dynamics. J. Math. Anal. Appl.253 (2001) 142–165.
- O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations. ESAIM: COCV16 (2010) 247–274.
- M. Langlais, A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal.16 (1985) 510–529.
- F.H. Lin, A uniqueness theorem for parabolic equation. Com. Pure Appl. Math.XLII (1990) 123–136.
- A. Ouédraogo and O. Traoré, Sur un problème de dynamique des populations. IMHOTEP J. Afr. Math. Pures Appl.4 (2003) 15–23.
- A. Ouédraogo and O. Traoré, Optimal control for a nonlinear population dynamics problem. Port. Math. (N.S.)62 (2005) 217–229.
- O. Traoré, Approximate controllability and application to data assimilation problem for a linear population dynamics model. IAENG Int. J. Appl. Math.37 (2007) 1–12.
- E. Zeidler, Nonlinear functional analysis and its applications, Applications to Mathematical PhysicsIV. Springer-Verlag, New York (1988).
- E. Zuazua, Finite dimensional null controllability of the semilinear heat equation. J. Math. Pures Appl.76 (1997) 237–264.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.