The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 2, page 318-342
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I340 (2005) 873–878.
- D. Auroux and J. Blum, A nudging-based data assimilation method for oceanographic problems : the back and forth nudging (BFN) algorithm. Nonlin. Proc. Geophys.15 (2008) 305–319.
- D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems. IEEE Trans. Automat. Contr. (2010) DOI : . URI10.1109/TAC.2010.2067291
- H. Brezis, Analyse fonctionnelle : théorie et applications. Dunod, Paris (1999).
- R. Courant and D. Hilbert, Methods of Mathematical PhysicsII. Wiley-Interscience (1962).
- L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence (1998).
- G. Evensen and P.J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev.128 (1999) 1852–1867.
- B.-Z. Guo and W. Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica45 (2009) 790–797.
- B.-Z. Guo and Z.-C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett.58 (2009) 334–341.
- J. Hoke and R.A. Anthes, The initialization of numerical models by a dynamic initialization technique. Mon. Weather Rev.104 (1976) 1551–1556.
- R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME – J. Basic Eng.82 (1960) 35–45.
- E. Kalnay, Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003).
- M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation : Trajectory generation, tracking, and observer design. J. Dyn. Sys. Meas. Control131 (2009) 1–8.
- F.-X. Le Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects. Tellus38A (1986) 97–110.
- D. Luenberger, Observers for multivariable systems. IEEE Trans. Automat. Contr.11 (1966) 190–197.
- Ph. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements : perspectives in medical imaging. Inver. Probl.25 (2009) 035010.
- K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica46 (2010) 1616–1625.
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions. SIAM Rev.20 (1978) 639–739.
- A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett.54 (2005) 613–625.