Codes générateurs minimaux de langages de mots bi-infinis

Jeanne Devolder

RAIRO - Theoretical Informatics and Applications (2010)

  • Volume: 34, Issue: 6, page 585-596
  • ISSN: 0988-3754

Abstract

top
In this paper we give two families of codes which are minimal generators of biinfinite languages: the family of very thin codes (which contains the rational codes) and another family containing the circular codes. We propose the conjecture that all codes are minimal generators.

How to cite

top

Devolder, Jeanne. "Codes générateurs minimaux de langages de mots bi-infinis." RAIRO - Theoretical Informatics and Applications 34.6 (2010): 585-596. <http://eudml.org/doc/221969>.

@article{Devolder2010,
abstract = { In this paper we give two families of codes which are minimal generators of biinfinite languages: the family of very thin codes (which contains the rational codes) and another family containing the circular codes. We propose the conjecture that all codes are minimal generators. },
author = {Devolder, Jeanne},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Mots bi-infinis; biω-générateur; code; code très mince; code rationnel; code circulaire; code précirculaire; code synchrone.; synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes},
language = {fre},
month = {3},
number = {6},
pages = {585-596},
publisher = {EDP Sciences},
title = {Codes générateurs minimaux de langages de mots bi-infinis},
url = {http://eudml.org/doc/221969},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Devolder, Jeanne
TI - Codes générateurs minimaux de langages de mots bi-infinis
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 6
SP - 585
EP - 596
AB - In this paper we give two families of codes which are minimal generators of biinfinite languages: the family of very thin codes (which contains the rational codes) and another family containing the circular codes. We propose the conjecture that all codes are minimal generators.
LA - fre
KW - Mots bi-infinis; biω-générateur; code; code très mince; code rationnel; code circulaire; code précirculaire; code synchrone.; synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes
UR - http://eudml.org/doc/221969
ER -

References

top
  1. J. Berstel et D. Perrin, Theory of codes. Academic Press, Orlando (1985).  
  2. D. Beauquier, Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986).  
  3. V. Bruyère, Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear).  
  4. J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90.  
  5. J. Devolder et I. Litovsky, Finitely generated bi ω -langages. Theoret. Comput. Sci.85 (1991) 33-52.  
  6. J. Devolder et E. Timmerman, Finitary codes for biinfinite words. RAIRO: Theoret. Informatics Appl.26 (1992) 363-386.  
  7. J. Devolder, Precircular codes and periodic bi-infinite words. Inform. and Comput.107 (1993) 185-201.  
  8. J. Devolder, Codes, mots infinis et bi-infinis. Ph.D. Thesis, University of Lille I, France (1993).  
  9. J. Devolder, M. Latteux, I. Litovsky et L. Staiger, Codes and infinite words. Acta Cybernet.11 (1994) 241-256.  
  10. F. Gire et M. Nivat, Langages algébriques de mots bi-infinis. Theoret. Comput. Sci.86 (1991) 277-323.  
  11. J.-L. Lassez, Circular codes and synchronisation. Internat. J. Comput. Inform. Sci.5 (1976) 201-208.  
  12. I. Litovsky, Prefix-free languages as ω -generators. Inform. Process. Lett.37 (1991) 61-65.  
  13. M. Nivat et D. Perrin, Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.