Codes générateurs minimaux de langages de mots bi-infinis
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 34, Issue: 6, page 585-596
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topDevolder, Jeanne. "Codes générateurs minimaux de langages de mots bi-infinis." RAIRO - Theoretical Informatics and Applications 34.6 (2010): 585-596. <http://eudml.org/doc/221969>.
@article{Devolder2010,
abstract = {
In this paper we give two families of codes which are minimal generators of
biinfinite languages: the family of very thin codes (which contains the rational
codes) and another family containing the circular codes. We propose the
conjecture that all codes are minimal generators.
},
author = {Devolder, Jeanne},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Mots bi-infinis; biω-générateur;
code; code très mince; code rationnel; code circulaire; code
précirculaire; code synchrone.; synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes},
language = {fre},
month = {3},
number = {6},
pages = {585-596},
publisher = {EDP Sciences},
title = {Codes générateurs minimaux de langages de mots bi-infinis},
url = {http://eudml.org/doc/221969},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Devolder, Jeanne
TI - Codes générateurs minimaux de langages de mots bi-infinis
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 6
SP - 585
EP - 596
AB -
In this paper we give two families of codes which are minimal generators of
biinfinite languages: the family of very thin codes (which contains the rational
codes) and another family containing the circular codes. We propose the
conjecture that all codes are minimal generators.
LA - fre
KW - Mots bi-infinis; biω-générateur;
code; code très mince; code rationnel; code circulaire; code
précirculaire; code synchrone.; synchronous codes; bi-infinite words; minimal generator; precircular codes; very thin codes; circular codes; rational codes
UR - http://eudml.org/doc/221969
ER -
References
top- J. Berstel et D. Perrin, Theory of codes. Academic Press, Orlando (1985).
- D. Beauquier, Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986).
- V. Bruyère, Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear).
- J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90.
- J. Devolder et I. Litovsky, Finitely generated bi-langages. Theoret. Comput. Sci.85 (1991) 33-52.
- J. Devolder et E. Timmerman, Finitary codes for biinfinite words. RAIRO: Theoret. Informatics Appl.26 (1992) 363-386.
- J. Devolder, Precircular codes and periodic bi-infinite words. Inform. and Comput.107 (1993) 185-201.
- J. Devolder, Codes, mots infinis et bi-infinis. Ph.D. Thesis, University of Lille I, France (1993).
- J. Devolder, M. Latteux, I. Litovsky et L. Staiger, Codes and infinite words. Acta Cybernet.11 (1994) 241-256.
- F. Gire et M. Nivat, Langages algébriques de mots bi-infinis. Theoret. Comput. Sci.86 (1991) 277-323.
- J.-L. Lassez, Circular codes and synchronisation. Internat. J. Comput. Inform. Sci.5 (1976) 201-208.
- I. Litovsky, Prefix-free languages as -generators. Inform. Process. Lett.37 (1991) 61-65.
- M. Nivat et D. Perrin, Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.