Finitary codes for biinfinite words

J. Devolder; E. Timmerman

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1992)

  • Volume: 26, Issue: 4, page 363-386
  • ISSN: 0988-3754

How to cite

top

Devolder, J., and Timmerman, E.. "Finitary codes for biinfinite words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 26.4 (1992): 363-386. <http://eudml.org/doc/92423>.

@article{Devolder1992,
author = {Devolder, J., Timmerman, E.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {factorization; decomposition; -codes; precircular codes; circular codes; -codes; -words},
language = {eng},
number = {4},
pages = {363-386},
publisher = {EDP-Sciences},
title = {Finitary codes for biinfinite words},
url = {http://eudml.org/doc/92423},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Devolder, J.
AU - Timmerman, E.
TI - Finitary codes for biinfinite words
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 4
SP - 363
EP - 386
LA - eng
KW - factorization; decomposition; -codes; precircular codes; circular codes; -codes; -words
UR - http://eudml.org/doc/92423
ER -

References

top
  1. 1. E. BARBIN-LE REST and M. LE REST, Sur la combinatoire des codes à deux mots, Theor. Comp. Sc., 1985, 41, pp. 61-80. Zbl0593.20066MR841023
  2. 2. M. P. BEAL, Codages, automates locaux et entropie, Thèse, Publications du L.I.T.P., 38, Université de Paris-VII, 1988. 
  3. 3. D. BEAUQUIER, Automates sur les mots biinfinis, Thèse d'état, Université Paris-VII, 1986. 
  4. 4. J. BERSTEL and D. PERRIN, Theory of Codes, Academic Press, Orlando, 1985. Zbl0587.68066MR797069
  5. 5. F. BLANCHARD, Codes engendrant certains systèmes sofiques, Theoret. Comput. Sci., 1989, 68, pp. 253-265. Zbl0683.28009MR1031960
  6. 6. J. DEVOLDER, Precircular Codes and Periodic Biinfinite Words, Publications du L.I.F.L., I.T. 175, 1989, Inform. and Comput. (to appear). Zbl0790.94007MR1251618
  7. 7. J. DEVOLDER, M. LATTEUX, I. LITOVSKY and L. STAIGER, Codes and Infinite Words, Publications du L.I.F.L., I.T. 220, 1991. 
  8. 8. J. DEVOLDER and E. TIMMERMAN, Codes for Biinfinite Words, Publications du L.I.F.L., I.T. 194, 1990. Zbl0754.68066
  9. 9. DO LONG VAN, Codes avec des mots infinis, R.A.I.R.O. Inform. Theor. Appl., 1982, 16, pp. 371-386. Zbl0498.68053
  10. 10. DO LONG VAN, D. G. THOMAS, K. G. SUBRAMANIAN and R. SIROMONEY, Bi-Infinitary Codes, RAIRO Inform. Theor. Appl. , 1990, 24, 1, pp. 67-87. Zbl0701.68061
  11. 11. S. EILENBERG, Automata, Languages, and Machines, Academic Press, New York, 1974. 
  12. 12. J. KARHUMAKI, On Three-Element Codes, Theoret. Comput.Sci., 1985, 40, pp. 3-11. Zbl0574.68062
  13. 13. J. L. LASSEZ, Circular codes and synchronisation, Internat. J. Comput. Syst. Sci., 1976, 5, pp. 201-208. Zbl0401.68050
  14. 14. M. LECONTE, K-th Power-Free Codes, Automata on infinite words, Lecture notes in Comput. Sci., 1984, 192, pp. 172-187. Zbl0571.68054
  15. 15. A. LENTIN and M. P. SCHUTZENBERGER, A Combinatorial Problem in the Theory of Free Monoids, Proc. Univ. of North Carolina, 1967, pp. 128-144. Zbl0221.20076
  16. 16. I. LITOVSKY, Générateurs des langages rationnels de mots infinis, Thèse, Université de Lille-I, 1988. 
  17. 17. A. DE LUCA and A. RESTIVO, On Some Properties of Very Pure Codes, Theoret. Comput. Sci., 1980, pp. 157-170. Zbl0421.68078MR551602
  18. 18. M. NIVAT and D. PERRIN, Ensembles reconnaissables de mots biinfinis, Proc. 14e Symp. on Theory of Computing, 1982, pp.47-59. Zbl0589.68056
  19. 19. A. RESTIVO, Codes and automata, Lecture notes in Comput. Sci., 1989, 386, pp. 186-198. MR1051960
  20. 20. L. STAIGER, On Infinitary Finite Length Codes, R.A.I.R.O., Inform. Théor. Appl., 1986, 20, 4, pp. 483-494. Zbl0628.68056MR880849

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.