An Exercise on Fibonacci Representations

Jean Berstel

RAIRO - Theoretical Informatics and Applications (2010)

  • Volume: 35, Issue: 6, page 491-498
  • ISSN: 0988-3754

Abstract

top
We give a partial answer to a question of Carlitz asking for a closed formula for the number of distinct representations of an integer in the Fibonacci base.

How to cite

top

Berstel, Jean. "An Exercise on Fibonacci Representations." RAIRO - Theoretical Informatics and Applications 35.6 (2010): 491-498. <http://eudml.org/doc/222046>.

@article{Berstel2010,
abstract = { We give a partial answer to a question of Carlitz asking for a closed formula for the number of distinct representations of an integer in the Fibonacci base. },
author = {Berstel, Jean},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Fibonacci base},
language = {eng},
month = {3},
number = {6},
pages = {491-498},
publisher = {EDP Sciences},
title = {An Exercise on Fibonacci Representations},
url = {http://eudml.org/doc/222046},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Berstel, Jean
TI - An Exercise on Fibonacci Representations
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 6
SP - 491
EP - 498
AB - We give a partial answer to a question of Carlitz asking for a closed formula for the number of distinct representations of an integer in the Fibonacci base.
LA - eng
KW - Fibonacci base
UR - http://eudml.org/doc/222046
ER -

References

top
  1. T.C. Brown, Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull.36 (1993) 15-21.  
  2. L. Carlitz, Fibonacci representations. Fibonacci Quarterly6 (1968) 193-220.  
  3. S. Eilenberg, Automata, Languages, and Machines, Vol. A. Academic Press (1974).  
  4. A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly92 (1985) 105-114.  
  5. C. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base φ and a generalization. Int. J. Algebra Comput.9 (1999) 51-384.  
  6. A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximation I. Abh. Math. Sem. Hamburg1 (1922) 77-98.  
  7. J. Sakarovitch, Éléments de théorie des automates. Vuibert (to appear).  
  8. D. Simplot and A. Terlutte, Closure under union and composition of iterated rational transductions. RAIRO: Theoret. Informatics Appl.34 (2000) 183-212.  
  9. D. Simplot and A. Terlutte, Iteration of rational transductions. RAIRO: Theoret. Informatics Appl.34 (2000) 99-129.  
  10. E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Royale Sci. Liège42 (1972) 179-182.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.