On the Number of Partitions of an Integer in the -bonacci Base
Marcia Edson[1]; Luca Q. Zamboni[1]
- [1] University of North Texas Department of Mathematics PO Box 311430 Denton, TX 76203-1430 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2271-2283
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEdson, Marcia, and Zamboni, Luca Q.. "On the Number of Partitions of an Integer in the $m$-bonacci Base." Annales de l’institut Fourier 56.7 (2006): 2271-2283. <http://eudml.org/doc/10204>.
@article{Edson2006,
abstract = {For each $m\ge 2,$ we consider the $m$-bonacci numbers defined by $F_k=2^k$ for $0\le k\le m-1$ and $F_k=F_\{k-1\} + F_\{k-2\} +\cdots +F_\{k-m\}$ for $k\ge m.$ When $m=2,$ these are the usual Fibonacci numbers. Every positive integer $n$ may be expressed as a sum of distinct $m$-bonacci numbers in one or more different ways. Let $R_m(n)$ be the number of partitions of $n$ as a sum of distinct $m$-bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for $R_m(n)$ involving sums of binomial coefficients modulo $2.$ In addition we show that this formula may be used to determine the number of partitions of $n$ in more general numeration systems including generalized Ostrowski number systems in connection with Episturmian words.},
affiliation = {University of North Texas Department of Mathematics PO Box 311430 Denton, TX 76203-1430 (USA); University of North Texas Department of Mathematics PO Box 311430 Denton, TX 76203-1430 (USA)},
author = {Edson, Marcia, Zamboni, Luca Q.},
journal = {Annales de l’institut Fourier},
keywords = {Numeration systems; Fibonacci numbers; Fine and Wilf theorem; episturmian words; numeration systems; epi-Sturmian words},
language = {eng},
number = {7},
pages = {2271-2283},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Number of Partitions of an Integer in the $m$-bonacci Base},
url = {http://eudml.org/doc/10204},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Edson, Marcia
AU - Zamboni, Luca Q.
TI - On the Number of Partitions of an Integer in the $m$-bonacci Base
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2271
EP - 2283
AB - For each $m\ge 2,$ we consider the $m$-bonacci numbers defined by $F_k=2^k$ for $0\le k\le m-1$ and $F_k=F_{k-1} + F_{k-2} +\cdots +F_{k-m}$ for $k\ge m.$ When $m=2,$ these are the usual Fibonacci numbers. Every positive integer $n$ may be expressed as a sum of distinct $m$-bonacci numbers in one or more different ways. Let $R_m(n)$ be the number of partitions of $n$ as a sum of distinct $m$-bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for $R_m(n)$ involving sums of binomial coefficients modulo $2.$ In addition we show that this formula may be used to determine the number of partitions of $n$ in more general numeration systems including generalized Ostrowski number systems in connection with Episturmian words.
LA - eng
KW - Numeration systems; Fibonacci numbers; Fine and Wilf theorem; episturmian words; numeration systems; epi-Sturmian words
UR - http://eudml.org/doc/10204
ER -
References
top- J. Berstel, An exercise on Fibonacci representations, A tribute to Aldo de Luca, RAIRO, Theor. Inform. Appl. 35 (2002), 491-498 Zbl1005.68119MR1922290
- V. Berthé, Autour du système de numération d’Ostrwoski, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 209-239 Zbl0994.68100MR1838931
- L. Carlitz, Fibonacci representations, Fibonacci Quarterly 6(4) (1968), 193-220 Zbl0167.03901MR236094
- N.J. Fine, H.S. Wilf, Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc. 16 (1965), 109-114 Zbl0131.30203MR174934
- O. Jenkinson, L.Q. Zamboni, Characterizations of balanced words via orderings, Theoret. Comput. Sci. 310 (2004), 247-271 Zbl1071.68090MR2020344
- J. Justin, Algebraic combinatorics and Computer Science, (2001), 533-539, Springer Italia, Milan Zbl0971.68125MR1854492
- J. Justin, G. Pirillo, Episturmian words and Episturmian morphisms, Theoret. Comput. Sci. 302 (2003), 1-34 Zbl1002.68116MR1896357
- J. Justin, G. Pirillo, Episturmian words: shifts, morphisms and numeration systems, Internat. J. Found. Comput. Sci. 15 (2004), 329-348 Zbl1067.68115MR2071462
- J. Justin, L. Vuillon, Return words in Sturmian and Episturmian words, Theor. Inform. Appl. 34 (2000), 343-356 Zbl0987.68055MR1829231
- P. Kocábová, Z. Masácová, E. Pelantová, Ambiguity in the -bonacci numeration system, (2004) Zbl1165.11009
- A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximation I, Abh. Math. Sem. Hamburg 1 (1922), 77-98 Zbl48.0185.01
- R. Tijdeman, L.Q. Zamboni, Fine and Wilf words for any periods, Indag. Math. (N.S.) 14 (2003), 135-147 Zbl1091.68088MR2015604
- E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Royale Sci. Liège 42 (1972), 179-182 Zbl0252.10011MR308032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.