# The discrete compactness property for anisotropic edge elements on polyhedral domains∗

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 47, Issue: 1, page 169-181
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topLombardi, Ariel Luis. "The discrete compactness property for anisotropic edge elements on polyhedral domains∗." ESAIM: Mathematical Modelling and Numerical Analysis 47.1 (2012): 169-181. <http://eudml.org/doc/222148>.

@article{Lombardi2012,

abstract = {We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of
tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.
Sci. 21 (1998) 519–549]. They are appropriately graded near
singular corners and edges of the polyhedron.},

author = {Lombardi, Ariel Luis},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations; discrete compactness property},

language = {eng},

month = {8},

number = {1},

pages = {169-181},

publisher = {EDP Sciences},

title = {The discrete compactness property for anisotropic edge elements on polyhedral domains∗},

url = {http://eudml.org/doc/222148},

volume = {47},

year = {2012},

}

TY - JOUR

AU - Lombardi, Ariel Luis

TI - The discrete compactness property for anisotropic edge elements on polyhedral domains∗

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/8//

PB - EDP Sciences

VL - 47

IS - 1

SP - 169

EP - 181

AB - We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of
tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.
Sci. 21 (1998) 519–549]. They are appropriately graded near
singular corners and edges of the polyhedron.

LA - eng

KW - Discrete compactness property; edge elements; anisotropic finite elements; Maxwell equations; discrete compactness property

UR - http://eudml.org/doc/222148

ER -

## References

top- T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Meth. Appl. Sci.21 (1998) 519–549. Zbl0911.65107
- D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math.87 (2000) 229–246. Zbl0967.65106
- D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer.19 (2010) 1–120. Zbl1242.65110
- A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math.101 (2005) 29–65. Zbl1116.78020
- S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal.38 (2000) 580–607. Zbl1005.78012
- S. Caorsi, P. Fernandes and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. Math. Model. Numer. Anal.35 (2001) 331–354. Zbl0993.78016
- V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Applications. Springer-Verlag, Berlin (1986). Zbl0585.65077
- R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237–339. Zbl1123.78320
- F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (1989) 479–490. Zbl0698.65067
- M. Krízek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29 (1992) 513–520. Zbl0755.41003
- R. Leis, Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York (1986). Zbl0599.35001
- A.L. Lombardi, Interpolation error estimates for edge elements on anisotropic meshes. IMA J. Numer. Anal.31 (2011) 1683–1712. Zbl1229.65196
- P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). Zbl1024.78009
- P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in R3. Math. Comp.70 (2001) 507–523. Zbl1035.65131
- J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341. Zbl0419.65069
- S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal.39 (2001) 784–816. Zbl1001.65122
- P. A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, edited by I. Galligani and E. Magenes. Lect. Notes Math.606 (1977). Zbl0362.65089
- Ch. Weber, A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci.2 (1980) 12–25. Zbl0432.35032

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.