Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)

Thomas Apel; Ariel L. Lombardi; Max Winkler

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2014)

  • Volume: 48, Issue: 4, page 1117-1145
  • ISSN: 0764-583X

Abstract

top
The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.

How to cite

top

Apel, Thomas, Lombardi, Ariel L., and Winkler, Max. "Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 48.4 (2014): 1117-1145. <http://eudml.org/doc/273100>.

@article{Apel2014,
abstract = {The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.},
author = {Apel, Thomas, Lombardi, Ariel L., Winkler, Max},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic boundary value problem; edge and vertex singularities; finite element method; anisotropic mesh grading; optimal control problem; discrete compactness property; error estimates; Poisson equation; quasi-interpolantion operator; numerical result},
language = {eng},
number = {4},
pages = {1117-1145},
publisher = {EDP-Sciences},
title = {Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)},
url = {http://eudml.org/doc/273100},
volume = {48},
year = {2014},
}

TY - JOUR
AU - Apel, Thomas
AU - Lombardi, Ariel L.
AU - Winkler, Max
TI - Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2014
PB - EDP-Sciences
VL - 48
IS - 4
SP - 1117
EP - 1145
AB - The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.
LA - eng
KW - elliptic boundary value problem; edge and vertex singularities; finite element method; anisotropic mesh grading; optimal control problem; discrete compactness property; error estimates; Poisson equation; quasi-interpolantion operator; numerical result
UR - http://eudml.org/doc/273100
ER -

References

top
  1. [1] Th. Apel, Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: M2AN 33 (1999) 1149–1185. Zbl0984.65113MR1736894
  2. [2] Th. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element method. Computing47 (1992) 277–293. Zbl0746.65077MR1155498
  3. [3] Th. Apel and B. Heinrich, Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal.31 (1994) 695–708. Zbl0807.65122MR1275108
  4. [4] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci.21 (1998) 519–549. Zbl0911.65107MR1615426
  5. [5] Th. Apel, A.-M. Sändig, and J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci.19 (1996) 63–85. Zbl0838.65109MR1365264
  6. [6] Th. Apel and D. Sirch, L2-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes. Appl. Math.56 (2011) 177–206. Zbl1224.65252MR2810243
  7. [7] Th. Apel and D. Sirch, A priori mesh grading for distributed optimal control problems, in Constrained Optimization and Optimal Control for Partial Differential Equations, vol. 160. Edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich. Int. Ser. Numer. Math.. Springer, Basel (2011) 377–389. MR3060484
  8. [8] F. Assous, P. Ciarlet, Jr. and J. Segré, Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the Singular Complement Method. J. Comput. Phys.161 (2000) 218–249. Zbl1007.78014MR1762079
  9. [9] I. Babuška, Finite element method for domains with corners. Computing6 (1970) 264–273. Zbl0224.65031MR293858
  10. [10] A.E. Beagles and J.R. Whiteman, Finite element treatment of boundary singularities by augmentation with non-exact singular functions. Numer. Methods Partial Differ. Eqs.2 (1986) 113–121. Zbl0626.65112MR867853
  11. [11] H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains with corners. Computing28 (1982) 53–63. Zbl0465.65059MR645969
  12. [12] C. Băcuţă, V. Nistor and L.T. Zikatanov, Improving the rate of convergence of high-order finite elements in polyhedra II: mesh refinements and interpolation. Numer. Funct. Anal. Optim.28 (2007) 775–824. Zbl1122.65109MR2347683
  13. [13] A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math.101 (2005) 29–65. Zbl1116.78020MR2194717
  14. [14] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numer.2 (1975) 77–84. Zbl0368.65008
  15. [15] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput.34 (1980) 441–463. Zbl0423.65009MR559195
  16. [16] P. Grisvard, Singularities in boundary value problems, vol. 22. Research Notes Appl. Math. Springer, New York (1992). Zbl0766.35001MR1173209
  17. [17] M. Hinze. A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl.30 (2005) 45–61. Zbl1074.65069MR2122182
  18. [18] P. Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés. R.A.I.R.O. Anal. Numer.10 (1976) 43–61. Zbl0346.65052MR455282
  19. [19] V. John and G. Matthies, MooNMD-a program package based on mapped finite element methods. Comput. Visual. Sci.6 (2004) 163–169. Zbl1061.65124MR2061275
  20. [20] F. Kikuchi, On a discrete compactness property for the nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (1989) 479–490. Zbl0698.65067MR1039483
  21. [21] A.L. Lombardi, The discrete compactness property for anisotropic edge elements on polyhedral domains. ESAIM: M2AN 47 (2013) 169–181. Zbl1281.78014MR2979513
  22. [22] J. M.-S. Lubuma and S. Nicaise, Dirichlet problems in polyhedral domains II: approximation by FEM and BEM. J. Comput. Appl. Math. 61 (1995) 13–27,. Zbl0840.65110MR1358044
  23. [23] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). Zbl1024.78009MR2059447
  24. [24] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, Academia, Éditeurs, Paris, Prague (1967). Zbl1225.35003MR227584
  25. [25] S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal.39 (2001) 784–816. Zbl1001.65122MR1860445
  26. [26] L.A. Oganesyan and L.A. Rukhovets, Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 8 (1968) 97–114. In Russian. English translation in USSR Comput. Math. and Math. Phys. 8 (1968) 129–152. Zbl0267.65070
  27. [27] T. von Petersdorff and E.P. Stephan. Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Methods Appl. Sci.12 (1990) 229–249. Zbl0722.35017MR1043756
  28. [28] G. Raugel, Résolution numérique de problèmes elliptiques dans des domaines avec coins. Ph.D. thesis. Université de Rennes (1978). 
  29. [29] A.H. Schatz and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 2: Refinements. Math. Comput. 33 (1979) 465–492. Zbl0417.65053MR502067
  30. [30] H. Schmitz, K. Volk and W.L. Wendland, On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Eqs.9 (1993) 323–337. Zbl0771.73014MR1216118
  31. [31] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput.54 (1990) 483–493. Zbl0696.65007MR1011446
  32. [32] K. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math.73 (1996) 373–398. Zbl0873.65098MR1389492
  33. [33] G. Strang and G. Fix, An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, NJ (1973). Zbl0356.65096MR443377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.