Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

Ludovic Moya

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 5, page 1225-1246
  • ISSN: 0764-583X

Abstract

top
In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction

How to cite

top

Moya, Ludovic. "Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1225-1246. <http://eudml.org/doc/222163>.

@article{Moya2012,
abstract = {In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction},
author = {Moya, Ludovic},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction; temporal convergence},
language = {eng},
month = {3},
number = {5},
pages = {1225-1246},
publisher = {EDP Sciences},
title = {Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗},
url = {http://eudml.org/doc/222163},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Moya, Ludovic
TI - Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/3//
PB - EDP Sciences
VL - 46
IS - 5
SP - 1225
EP - 1246
AB - In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction
LA - eng
KW - Temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction; temporal convergence
UR - http://eudml.org/doc/222163
ER -

References

top
  1. M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput.31 (2009) 1322–1346.  
  2. A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal.44 (2006) 2198–2226.  
  3. A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn.44 (2008) 1250–1253.  
  4. B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000)  
  5. G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys.217 (2006) 340–363.  
  6. J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput.31 (2009) 1985–2014.  
  7. V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys.229 (2010) 512–526.  
  8. H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod.6 (2009) 193–216.  
  9. I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math.234 (2010) 3283–3302.  
  10. L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN39 (2005) 1149–1176.  
  11. M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math.234 (2010) 3283–3302.  
  12. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996).  
  13. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002).  
  14. J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys.181 (2002) 186–221.  
  15. J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008).  
  16. W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003).  
  17. J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002).  
  18. G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm53 (2010) 321-342 
  19. R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput.16 (1995) 151–168.  
  20. E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys.227 (2008) 6795–6820.  
  21. J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341.  
  22. J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math.50 (1986) 57–81.  
  23. S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN40 (2006) 815–841.  
  24. M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel19 (2000) 913-931.  
  25. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A146 (1990) 319–323.  
  26. A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model.22 (2009) 77–103.  
  27. J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math.51 (2011) 427–445. 
  28. J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at  URIhttp://oai.cwi.nl/oai/asset/17036/17036A.pdf.
  29. J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl.431 (2009) 300–317.  
  30. J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput.6 (1985) 771–780.  
  31. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag.14 (1966) 302–307.  
  32. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A150 (1990) 262–268.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.