# Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 46, Issue: 5, page 1225-1246
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMoya, Ludovic. "Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1225-1246. <http://eudml.org/doc/222163>.

@article{Moya2012,

abstract = {In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction},

author = {Moya, Ludovic},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction; temporal convergence},

language = {eng},

month = {3},

number = {5},

pages = {1225-1246},

publisher = {EDP Sciences},

title = {Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗},

url = {http://eudml.org/doc/222163},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Moya, Ludovic

TI - Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/3//

PB - EDP Sciences

VL - 46

IS - 5

SP - 1225

EP - 1246

AB - In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction

LA - eng

KW - Temporal convergence; discontinuous Galerkin method; time-domain Maxwell equations; component splitting; order reduction; temporal convergence

UR - http://eudml.org/doc/222163

ER -

## References

top- M.A. Botchev and J.G. Verwer, Numerical integration of damped maxwell equations. SIAM J. Sci. Comput.31 (2009) 1322–1346.
- A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal.44 (2006) 2198–2226.
- A. Catella, V. Dolean and S. Lanteri, An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn.44 (2008) 1250–1253.
- B. Cockburn, G.E.G.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000)
- G. Cohen, X. Ferrieres and S. Pernet, A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time-domain. J. Comput. Phys.217 (2006) 340–363.
- J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput.31 (2009) 1985–2014.
- V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys.229 (2010) 512–526.
- H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod.6 (2009) 193–216.
- I. Faragó, Á. Havasi and Z. Zlatev, Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math.234 (2010) 3283–3302.
- L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN39 (2005) 1149–1176.
- M.J. Grote and T. Mitkova, Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math.234 (2010) 3283–3302.
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996).
- E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002).
- J. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys.181 (2002) 186–221.
- J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods. Springer (2008).
- W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003).
- J. Jin, The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002).
- G.Yu. Kulikov, Local theory of extrapolation methods. Numer. Algorithm53 (2010) 321-342
- R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput.16 (1995) 151–168.
- E. Montseny, S. Pernet, X. Ferrires and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys.227 (2008) 6795–6820.
- J.C. Nédélec, Mixed finite elements in R3. Numer. Math.35 (1980) 315–341.
- J.C. Nédélec, A new dfamily of mixed finite elements in R3. Numer. Math.50 (1986) 57–81.
- S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN40 (2006) 815–841.
- M. Remaki, A new finite volume scheme for solving Maxwell’s system. Compel19 (2000) 913-931.
- M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A146 (1990) 319–323.
- A. Taube, M. Dumbser, C.D. Munz and R. Schneider, A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model.22 (2009) 77–103.
- J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT Numer. Math.51 (2011) 427–445.
- J.G Verwer, Composition methods, Maxwell’s and source term. CWI Technical report (2010); Available at URIhttp://oai.cwi.nl/oai/asset/17036/17036A.pdf.
- J.G. Verwer and M.A. Botchev, Unconditionaly stable integration of Maxwell’s equations. Linear Algebra Appl.431 (2009) 300–317.
- J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput.6 (1985) 771–780.
- K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag.14 (1966) 302–307.
- H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A150 (1990) 262–268.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.