Mathematical and numerical modelling of piezoelectric sensors
Sebastien Imperiale; Patrick Joly
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 4, page 875-909
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- N. Abboud, G. Wojcik and D.K. Vaughan, Finite element modeling for ultrasonic transducers. SPIE Int. Symp. Medical Imaging (1998).
- E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions part i : Models without homogenization. Math. Comput. Model.26 (1997) 79–106.
- P. Challande, Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control37 (2002) 135–140.
- G.C. Cohen, Higher-order numerical methods for transient wave equations. Springer (2002).
- E. Dieulesaint and D. Royer, Elastic waves in solids, free and guided propagation. Springer (2000).
- M. Durufle, P. Grob and P. Joly, Influence of gauss and gauss-lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ.25 (2009) 526–551.
- Y. Gómez-Ullate Ricón and F.M. de Espinosa Freijo, Piezoelectric modelling using a time domain finite element program. J. Eur. Ceram. Soc.27 (2007) 4153–4157.
- T. Ikeda, Fundamentals of piezoelectricity. Oxford science publications (1990).
- N.A. Kampanis, V.A. Dougalis and J.A. Ekaterinaris, Effective computational methods for wave propagation. Chapman and Hall/CRC (2008).
- T. Lahrner, M. Kaltenbacher, B. Kaltenbacher, R. Lerch and E. Leder. Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control55 (2008) 465–475.
- R. Lerch, Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control37 (2002) 233–247.
- S. Li, Transient wave propagation in a transversely isotropic piezoelectric half space. Z. Angew. Math. Phys.51 (2000) 236–266.
- D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems. SIAM J. Math. Anal.37 (2005) 651–672.
- J. San Miguel, J. Adamowski and F. Buiochi, Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water. ABCM Symposium Series in Mechatronics2 (2005) 458–464.
- P. Monk, Finite element methods for maxwell’s equations. Oxford science publications (2003).
- J.C. Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems. Springer (2001).
- V. Priimenko and M. Vishnevskii, An initial boundary-value problem for model electromagnetoelasticity system. J. Differ. Equ.235 (2007) 31–55.
- L. Schmerr Jr and S.J. Song, Ultrasonic nondestructive evaluation systems. Springer (2007).
- C. Weber and P. Werner, A local compactness theorem for maxwell’s equations. Math. Methods Appl. Sci.2 (1980) 12–25.