A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 1, page 163-182
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams. Sobolev spaces, Academic Press, 1975.
- P. Alart, A. Curnier. Generalisation of Newton type methods to contact problems with friction, J. Mecan. Theor. Appl., 7 (1988), 67–82.
- I. Babuška. The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179–192.
- H.J.C. Barbosa, T.J.R. Hughes. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85 (1991), 109–128.
- H.J.C. Barbosa, T.J.R. Hughes. Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62 (1992), 1–15.
- H.J.C. Barbosa, T.J.R. Hughes. Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities, Comput. Methods Appl. Mech. Engrg., 97 (1992), 193–210.
- R. Becker, P. Hansbo, R. Stenberg. A finite element method for domain decomposition with non-matching grids,Math. Model. Numer. Anal., 37 (2003), 209–225.
- Z. Belhachmi, F. Ben Belgacem. Quadratic finite element approximation of the Signorini problem, Math. Comp., 72 (2003), 83–104.
- Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski. Mixed finite element methods for smooth domain formulation of crack problems, SIAM J. Numer. Anal., 43 (2005), 1295–1320.
- F. Ben Belgacem, Y. Renard. Hybrid finite element methods for the Signorini problem, Math. Comp., 72 (2003), 1117–1145.
- S.C. Brenner, L.R. Scott. The mathematical theory of finite element methods, Springer-Verlag, 2002.
- F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. Franç. Automatique Inform. Rech. Opér., Sér. Rouge Anal. Numér., 8 (1974), 129–151.
- F. Brezzi, M. Fortin. Mixed and hybrid finite element methods, Springer, 1991.
- Z. Chen. On the augmented Lagrangian approach to Signorini elastic contact problem, Numer. Math., 88 (2001), 641–659.
- P.G. Ciarlet. The finite element method for elliptic problems, in Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions, North Holland, 2 (1991), 17–352.
- M. Cocou, R. Roccou. Numerical analysis of quasistatic unilateral contact problems with local friction, SIAM J. Numer. Anal., 39 (2001), 1324–1342.
- P. Coorevits, P. Hild, M. Hjiaj. A posteriori error control of finite element approximations for Coulomb's frictional contact, SIAM J. Sci. Comput., 23 (2001), 976–999.
- P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies, Math. Comp., 71 (2002), 1–25.
- G. Duvaut. Problèmes unilatéraux en mécanique des milieux continus, in Actes du congrès international des mathématiciens (Nice 1970), Gauthier-Villars, 3 (1971), 71–77.
- G. Duvaut, J.L. Lions. Les inéquations en mécanique et en physique, Dunod, 1972.
- C. Eck, J. Jarušek. Existence results for the static contact problem with Coulomb friction, Math. Models Meth. Appl. Sci., 8 (1998), 445–468.
- C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics, CRC Press, 270 (2005).
- W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002.
- P. Hansbo, C. Lovadina, I. Perugia, G. Sangalli. A Lagrange multiplier method for the finite element solution of elliptic interface problems using nonmatching meshes, Numer. Math., 100 (2005), 91–115.
- J. Haslinger. Approximation of the Signorini problem with friction, obeying the Coulomb law, Math. Methods Appl. Sci., 5 (1983), 422–437.
- J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Eds. P.G. Ciarlet and J.-L. Lions, North Holland, 4 (1996), 313–485.
- J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method, submitted.
- R. Hassani, P. Hild, I. Ionescu, N.D. Sakki. A mixed finite element method and solution multiplicity for Coulomb frictional contact, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4517–4531.
- P. Heintz, P. Hansbo. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction, Comput. Methods Appl. Mech. Engrg., 195 (2006), 4323–4333.
- P. Hild. Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity, Q. Jl. Mech. Appl. Math., 57 (2004), 225–235.
- P. Hild. Multiple solutions of stick and separation type in the Signorini model with Coulomb friction, Z. Angew. Math. Mech., 85 (2005), 673–680.
- P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems, Appl. Numer. Math., 41 (2002), 401–421.
- P. Hild, Y. Renard. An error estimate for the Signorini problem with Coulomb friction approximated by the finite elements, SIAM J. Numer. Anal., 45 (2007), 2012–2031.
- P. Hild, Y. Renard. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, submitted.
- J. Jarušek. Contact problems with bounded friction. Coercive case, Czechoslovak. Math. J., 33 (1983), 237–261.
- N. Kikuchi, J.T. Oden. Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM, 1988.
- D. Kinderlehrer, G. Stampacchia. An introduction to variational inequalities and their applications, Pure and Applied mathematics, Academic Press, New York-London, 1980.
- T. Laursen. Computational contact and impact mechanics, Springer, 2002.
- J.–L. Lions, E. Magenes. Problèmes aux limites non homogènes, Dunod, 1968.
- V. Lleras. Thesis, in preparation.
- V.G. Maz'ya, T.O. Shaposhnikova. Theory of multipliers in spaces of differentiable functions, Pitman, 1985.
- N. Moës, J. Dolbow, T. Belytschko. A finite element method for cracked growth without remeshing, Int. J. Numer. Meth. Engng., 46 (1999), 131–150.
- J. Nečas, J. Haslinger, J. Jarušek. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U. M. I., 17 (1980), 796–811.
- J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg, 36 (1971), 9–15.
- D.R.J. Owen, D. Peric. Computational model for 3D contact problems with friction based on the penalty method, Int. J. Num. Meth. Eng., 35 (1992), 1289–1309.
- Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction, SIAM J. Math. Anal., 38 (2006), 452–467.
- M. Shillor, M. Sofonea, J.J. Telega. Models and analysis of quasistatic contact. Variational methods, Springer, 2004.
- R. Stenberg. On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63 (1995), 139–148.
- P. Wriggers. Computational Contact Mechanics, Wiley, 2002.