A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics

V. Lleras

Mathematical Modelling of Natural Phenomena (2009)

  • Volume: 4, Issue: 1, page 163-182
  • ISSN: 0973-5348

Abstract

top
In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.

How to cite

top

Lleras, V.. "A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics." Mathematical Modelling of Natural Phenomena 4.1 (2009): 163-182. <http://eudml.org/doc/222197>.

@article{Lleras2009,
abstract = { In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.},
author = {Lleras, V.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {unilateral contact; Coulomb's friction law; finite elements; mixed method; stabilization; existence; uniqueness},
language = {eng},
month = {1},
number = {1},
pages = {163-182},
publisher = {EDP Sciences},
title = {A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics},
url = {http://eudml.org/doc/222197},
volume = {4},
year = {2009},
}

TY - JOUR
AU - Lleras, V.
TI - A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/1//
PB - EDP Sciences
VL - 4
IS - 1
SP - 163
EP - 182
AB - In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.
LA - eng
KW - unilateral contact; Coulomb's friction law; finite elements; mixed method; stabilization; existence; uniqueness
UR - http://eudml.org/doc/222197
ER -

References

top
  1. R.A. Adams. Sobolev spaces, Academic Press, 1975.  Zbl0314.46030
  2. P. Alart, A. Curnier. Generalisation of Newton type methods to contact problems with friction, J. Mecan. Theor. Appl., 7 (1988), 67–82.  Zbl0679.73046
  3. I. Babuška. The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179–192.  Zbl0258.65108
  4. H.J.C. Barbosa, T.J.R. Hughes. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85 (1991), 109–128.  Zbl0764.73077
  5. H.J.C. Barbosa, T.J.R. Hughes. Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62 (1992), 1–15.  Zbl0765.65102
  6. H.J.C. Barbosa, T.J.R. Hughes. Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities, Comput. Methods Appl. Mech. Engrg., 97 (1992), 193–210.  Zbl0768.65033
  7. R. Becker, P. Hansbo, R. Stenberg. A finite element method for domain decomposition with non-matching grids,Math. Model. Numer. Anal., 37 (2003), 209–225.  Zbl1047.65099
  8. Z. Belhachmi, F. Ben Belgacem. Quadratic finite element approximation of the Signorini problem, Math. Comp., 72 (2003), 83–104.  Zbl1112.74446
  9. Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski. Mixed finite element methods for smooth domain formulation of crack problems, SIAM J. Numer. Anal., 43 (2005), 1295–1320.  Zbl1319.74027
  10. F. Ben Belgacem, Y. Renard. Hybrid finite element methods for the Signorini problem, Math. Comp., 72 (2003), 1117–1145.  Zbl1023.74043
  11. S.C. Brenner, L.R. Scott. The mathematical theory of finite element methods, Springer-Verlag, 2002.  Zbl1012.65115
  12. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. Franç. Automatique Inform. Rech. Opér., Sér. Rouge Anal. Numér., 8 (1974), 129–151.  Zbl0338.90047
  13. F. Brezzi, M. Fortin. Mixed and hybrid finite element methods, Springer, 1991.  Zbl0788.73002
  14. Z. Chen. On the augmented Lagrangian approach to Signorini elastic contact problem, Numer. Math., 88 (2001), 641–659.  Zbl1047.74054
  15. P.G. Ciarlet. The finite element method for elliptic problems, in Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions, North Holland, 2 (1991), 17–352.  
  16. M. Cocou, R. Roccou. Numerical analysis of quasistatic unilateral contact problems with local friction, SIAM J. Numer. Anal., 39 (2001), 1324–1342.  Zbl1024.35057
  17. P. Coorevits, P. Hild, M. Hjiaj. A posteriori error control of finite element approximations for Coulomb's frictional contact, SIAM J. Sci. Comput., 23 (2001), 976–999.  Zbl1032.74050
  18. P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies, Math. Comp., 71 (2002), 1–25.  Zbl1013.74062
  19. G. Duvaut. Problèmes unilatéraux en mécanique des milieux continus, in Actes du congrès international des mathématiciens (Nice 1970), Gauthier-Villars, 3 (1971), 71–77.  
  20. G. Duvaut, J.L. Lions. Les inéquations en mécanique et en physique, Dunod, 1972.  Zbl0298.73001
  21. C. Eck, J. Jarušek. Existence results for the static contact problem with Coulomb friction, Math. Models Meth. Appl. Sci., 8 (1998), 445–468.  Zbl0907.73052
  22. C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics, CRC Press, 270 (2005).  Zbl1079.74003
  23. W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002.  Zbl1013.74001
  24. P. Hansbo, C. Lovadina, I. Perugia, G. Sangalli. A Lagrange multiplier method for the finite element solution of elliptic interface problems using nonmatching meshes, Numer. Math., 100 (2005), 91–115.  Zbl1066.65125
  25. J. Haslinger. Approximation of the Signorini problem with friction, obeying the Coulomb law, Math. Methods Appl. Sci., 5 (1983), 422–437.  Zbl0525.73130
  26. J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Eds. P.G. Ciarlet and J.-L. Lions, North Holland, 4 (1996), 313–485.  Zbl0873.73079
  27. J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method, submitted.  Zbl1205.65322
  28. R. Hassani, P. Hild, I. Ionescu, N.D. Sakki. A mixed finite element method and solution multiplicity for Coulomb frictional contact, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4517–4531.  Zbl1054.74052
  29. P. Heintz, P. Hansbo. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction, Comput. Methods Appl. Mech. Engrg., 195 (2006), 4323–4333.  Zbl1123.74045
  30. P. Hild. Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity, Q. Jl. Mech. Appl. Math., 57 (2004), 225–235.  Zbl1059.74042
  31. P. Hild. Multiple solutions of stick and separation type in the Signorini model with Coulomb friction, Z. Angew. Math. Mech., 85 (2005), 673–680.  Zbl1149.74338
  32. P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems, Appl. Numer. Math., 41 (2002), 401–421.  Zbl1062.74050
  33. P. Hild, Y. Renard. An error estimate for the Signorini problem with Coulomb friction approximated by the finite elements, SIAM J. Numer. Anal., 45 (2007), 2012–2031.  Zbl1146.74050
  34. P. Hild, Y. Renard. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, submitted.  Zbl1194.74408
  35. J. Jarušek. Contact problems with bounded friction. Coercive case, Czechoslovak. Math. J., 33 (1983), 237–261.  Zbl0519.73095
  36. N. Kikuchi, J.T. Oden. Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM, 1988.  Zbl0685.73002
  37. D. Kinderlehrer, G. Stampacchia. An introduction to variational inequalities and their applications, Pure and Applied mathematics, Academic Press, New York-London, 1980.  Zbl0457.35001
  38. T. Laursen. Computational contact and impact mechanics, Springer, 2002.  Zbl0996.74003
  39. J.–L. Lions, E. Magenes. Problèmes aux limites non homogènes, Dunod, 1968.  Zbl0165.10801
  40. V. Lleras. Thesis, in preparation.  Zbl1162.74043
  41. V.G. Maz'ya, T.O. Shaposhnikova. Theory of multipliers in spaces of differentiable functions, Pitman, 1985.  
  42. N. Moës, J. Dolbow, T. Belytschko. A finite element method for cracked growth without remeshing, Int. J. Numer. Meth. Engng., 46 (1999), 131–150.  Zbl0955.74066
  43. J. Nečas, J. Haslinger, J. Jarušek. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U. M. I., 17 (1980), 796–811.  Zbl0445.49011
  44. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg, 36 (1971), 9–15.  Zbl0229.65079
  45. D.R.J. Owen, D. Peric. Computational model for 3D contact problems with friction based on the penalty method, Int. J. Num. Meth. Eng., 35 (1992), 1289–1309.  Zbl0768.73100
  46. Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction, SIAM J. Math. Anal., 38 (2006), 452–467.  Zbl1155.35383
  47. M. Shillor, M. Sofonea, J.J. Telega. Models and analysis of quasistatic contact. Variational methods, Springer, 2004.  Zbl1069.74001
  48. R. Stenberg. On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63 (1995), 139–148.  Zbl0856.65130
  49. P. Wriggers. Computational Contact Mechanics, Wiley, 2002.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.