Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model
T. Bodnár; K.R. Rajagopal; A. Sequeira
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 5, page 1-24
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Anand, K.R. Rajagopal. A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. of Cardiovascular Medicine and Science, 4, 2 (2004), 59–68.
- M. Anand, K.R. Rajagopal. A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Méchanique, 330 (2002), 557–562.
- M. Anand, K. Rajagopal, K.R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. of Theoretical Medicine, 5, 3–4 (2003), 183–218.
- M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation and lysis of blood clots. Pathophysiology Haemostasis Thrombosis, 34 (2005), 109-120.
- M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. of Theoretical Biology, 253 (2008), 725–738.
- N. Arada, M. Pires, A. Sequeira. Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53 (2007), pp. 625-646.
- N. Arada, M. Pires, A. Sequeira. Numerical simulations of shear-thinning Oldroyd-B fluids in curved pipes. IASME Transactions, Issue 6, 2 (2005), pp. 948-959.
- P.D. Bailyk, D.A. Steinman, C.R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology, 31 (5) (1994) 565-586.
- A.A. Berger, L. Talbot, L.-S. Yao. Flow in curved pipes. Annu. Rev. Fluid Mech., 15 (1983) 461512.
- T. Bodnár, A. Sequeira. Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Advances in Mathematical Fluid Mechanics (edited by R. Rannacher & A. Sequeira), pp. 83–104. Springer Verlag (2010).
- T. Bodnár, J. Příhoda. Numerical simulation of turbulent free-surface flow in curved channel. Journal of Flow, Turbulence and Combustion, 76 (4) (2006) 429–442.
- T. Bodnár, A. Sequeira. Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, 9 (2) (2008) 83–104.
- T. Bodnár, A. Sequeira, L. Pirkl. Numerical Simulations of Blood Flow in a Stenosed Vessel under Different Flow Rates using a Generalized Oldroyd - B Model In: Numerical Analysis and Applied Mathematics, Vols 1 and 2. Melville, New York: American Institute of Physics, (2009), vol. 2, pp. 645–648.
- T. Bodnár, A. Sequeira, M. Prosi. On the Shear-Thinning and Viscoelastic Effects of Blood Flow under Various Flow Rates. Applied Mathematics and Computation, 217 (2011), 5055–5067.
- S.E. Charm, G.S. Kurland. Viscometry of human blood for shear rates of 0-100,000 sec-1. Nature, 206 (1965), 617–618.
- S. Chien, S. Usami, H.M. Taylor, J.L. Lundberg, M.I. Gregersen. Effect of hematocrit and plasma proteins on human blood rheology at low shear rates. Journal of Applied Physiology, 21, 1 (1966), 81–87.
- S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen.Blood viscosity: Influence of erythrocyte aggregation. Science, 157, 3790 (1967), 829–831.
- S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen. Blood viscosity: Influence of erythrocyte deformation. Science, 157, 3790 (1967), 827–829.
- S. Chien, S. Usami, R. J. Dellenback, M.I. Gregersen. Shear-dependent deformation of erythrocytes in rheology of human blood. American Journal of Physiology, 219 (1970), 136–142.
- S. Chien, K.L.P. Sung, R. Skalak, S. Usami, A.L. Tozeren. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophysical Journal, 24, 2 (1978), 463–487.
- E.A. Evans, R.M. Hochmuth. Membrane viscoelasticity. Biophysical Journal, 16, 1 (1976), 1–11.
- Y. Fan, R.I. Tanner, N. Phan-Thien. Fully developed viscous and viscoelastic flows in curved pipes. J. Fluid Mech., 440 (2001), 327-357.
- F. Gijsen, F. van de Vosse, J. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of Biomechanics, 32 (1999), 601-608.
- J. Hron, J. Málek, S. Turek. A numerical investigation of flows of shear-thinning fluids with applications to blood rheology. Int. J. Numer. Meth. Fluids, 32 (2000), 863-879.
- A. Jameson, W.Schmidt, E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping scheme. In: AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto (1981), AIAA paper 81-1259.
- A. Leuprecht, K. Perktold. Computer simulation of non-Newtonian effects of blood flow in large arteries. Comp. Methods in Biomech. and Biomech. Eng., 4 (2001), 149–163.
- D. Quemada. Rheology of concentrated disperse systems III. General features of the proposed non-Newtonian model. Comparison with experimental data. Rheol. Acta, 17 (1978), 643–653.
- K.R. Rajagopal, A.R. Srinivasa. A thermodynamic frame work for rate type fluid models. Journal of Non-Newtonian Fluid Mechanics, 80 (2000), 207–227.
- K.R. Rajagopal, A.R. Srinivasa. A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A, 467 (2011), 39–58.
- G.B. Thurston. Viscoelasticity of human blood. Biophysical Journal, 12 (1972), 1205–1217.
- G.B. Thurston. Frequency and shear rate dependence of viscoelasticity of blood. Biorheology, 10, 3 (1973), 375–381.
- G.B. Thurston. Non-Newtonian viscosity of human blood: Flow induced changes in microstructure. Biorheology, 31(2), (1994), 179–192.
- J. Vierendeels, K. Riemslagh, E. Dick. A multi-grid semi-implicit line-method for viscous incompressible and low-Mach-number flows on high aspect ratio grids. J. Comput. Phys., 154 (1999), 310–344.