Page 1 Next

Displaying 1 – 20 of 58

Showing per page

A 2D model for hydrodynamics and biology coupling applied to algae growth simulations

Olivier Bernard, Anne-Céline Boulanger, Marie-Odile Bristeau, Jacques Sainte-Marie (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Cultivating oleaginous microalgae in specific culturing devices such as raceways is seen as a future way to produce biofuel. The complexity of this process coupling non linear biological activity to hydrodynamics makes the optimization problem very delicate. The large amount of parameters to be taken into account paves the way for a useful mathematical modeling. Due to the heterogeneity of raceways along the depth dimension regarding temperature, light intensity or nutrients availability, we adopt...

A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with shells...

A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that...

Asymptotic analysis of blood flow in stented arteries: time dependency and direct simulations***

Vuk Milišić, Amélie Rambaud, Kirill Pichon Gostaf (2010)

ESAIM: Proceedings

This work aims to extend in two distinct directions results recently obtained in [10]. In a first step we focus on the possible extension of our results to the time dependent case. Whereas in the second part some preliminary numerical simulations aim to give orders of magnitudes in terms of numerical costs of direct 3D simulations. We consider, in the first part, the time dependent rough problem for a simplified heat equation in a straight channel that mimics the axial...

Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall

Yu. Vassilevski, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova (2011)

Mathematical Modelling of Natural Phenomena

We present the fiber-spring elastic model of the arterial wall with atherosclerotic plaque composed of a lipid pool and a fibrous cap. This model allows us to reproduce pressure to cross-sectional area relationship along the diseased vessel which is used in the network model of global blood circulation. Atherosclerosis attacks a region of systemic arterial network. Our approach allows us to examine the impact of the diseased region onto global haemodynamics....

Diffusion models of multicomponent mixtures in the lung*

L. Boudin, D. Götz, B. Grec (2010)

ESAIM: Proceedings

In this work, we are interested in two different diffusion models for multicomponent mixtures. We numerically recover experimental results underlining the inadequacy of the usual Fick diffusion model, and the importance of using the Maxwell-Stefan model in various situations. This model nonlinearly couples the mole fractions and the fluxes of each component of the mixture. We then consider a subregion of the lower part of the lung, in which we compare...

Fluid–particle shear flows

Bertrand Maury (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fluid–particle shear flows

Bertrand Maury (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Currently displaying 1 – 20 of 58

Page 1 Next