Linear Stability of Fractional Reaction - Diffusion Systems

Y. Nec; A. A. Nepomnyashchy

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 2, Issue: 2, page 77-105
  • ISSN: 0973-5348

Abstract

top
Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal critical value, the monotonous modes become stable, whereas oscillatory instability persists until the anomalous critical value is also exceeded. An exact formula for the anomalous critical value is obtained. It is shown that in the short wave limit the growth rate is a power law of the wave number. When the anomaly exponents differ, disturbance modes are governed by power laws of the distinct exponents. If the difference between the diffusion anomaly exponents is small, the splitting of the power law exponents is absent at the leading order and emerges only as a next-order effect. In the short wave limit the onset of instability is governed by the anomaly exponents, whereas the ratio of diffusion coefficients influences the complex growth rates. When the exponent of the inhibitor is greater than that of the activator, the system is always unstable due to the inhibitor enhanced diffusion relatively to the activator. If the exponent of the activator is greater, the system is always stable. Existence of oscillatory unstable modes is also possible for waves of moderate length.

How to cite

top

Nec, Y., and Nepomnyashchy, A. A.. "Linear Stability of Fractional Reaction - Diffusion Systems." Mathematical Modelling of Natural Phenomena 2.2 (2010): 77-105. <http://eudml.org/doc/222256>.

@article{Nec2010,
abstract = { Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal critical value, the monotonous modes become stable, whereas oscillatory instability persists until the anomalous critical value is also exceeded. An exact formula for the anomalous critical value is obtained. It is shown that in the short wave limit the growth rate is a power law of the wave number. When the anomaly exponents differ, disturbance modes are governed by power laws of the distinct exponents. If the difference between the diffusion anomaly exponents is small, the splitting of the power law exponents is absent at the leading order and emerges only as a next-order effect. In the short wave limit the onset of instability is governed by the anomaly exponents, whereas the ratio of diffusion coefficients influences the complex growth rates. When the exponent of the inhibitor is greater than that of the activator, the system is always unstable due to the inhibitor enhanced diffusion relatively to the activator. If the exponent of the activator is greater, the system is always stable. Existence of oscillatory unstable modes is also possible for waves of moderate length. },
author = {Nec, Y., Nepomnyashchy, A. A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {reaction-diffusion; anomaly exponent; monotonous instablity; oscillatory instability; critical diffusion coefficients' ratio},
language = {eng},
month = {3},
number = {2},
pages = {77-105},
publisher = {EDP Sciences},
title = {Linear Stability of Fractional Reaction - Diffusion Systems},
url = {http://eudml.org/doc/222256},
volume = {2},
year = {2010},
}

TY - JOUR
AU - Nec, Y.
AU - Nepomnyashchy, A. A.
TI - Linear Stability of Fractional Reaction - Diffusion Systems
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/3//
PB - EDP Sciences
VL - 2
IS - 2
SP - 77
EP - 105
AB - Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal critical value, the monotonous modes become stable, whereas oscillatory instability persists until the anomalous critical value is also exceeded. An exact formula for the anomalous critical value is obtained. It is shown that in the short wave limit the growth rate is a power law of the wave number. When the anomaly exponents differ, disturbance modes are governed by power laws of the distinct exponents. If the difference between the diffusion anomaly exponents is small, the splitting of the power law exponents is absent at the leading order and emerges only as a next-order effect. In the short wave limit the onset of instability is governed by the anomaly exponents, whereas the ratio of diffusion coefficients influences the complex growth rates. When the exponent of the inhibitor is greater than that of the activator, the system is always unstable due to the inhibitor enhanced diffusion relatively to the activator. If the exponent of the activator is greater, the system is always stable. Existence of oscillatory unstable modes is also possible for waves of moderate length.
LA - eng
KW - reaction-diffusion; anomaly exponent; monotonous instablity; oscillatory instability; critical diffusion coefficients' ratio
UR - http://eudml.org/doc/222256
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.