Modeling Adaptive Behavior in Influenza Transmission
Mathematical Modelling of Natural Phenomena (2012)
- Volume: 7, Issue: 3, page 253-262
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Balinska, C. Rizzo. Behavioural responses to influenza pandemics : what do we know ? PLoS. Curr., (2009), p. RRN1037.
- V. Capasso, G. Serio. Ageneralization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci., 42 (1978), 43-61.
- J. Cui, Y. Sun, H. Zhu. The impact of media on the control of infectious diseases. J. Dynam. Differential Equations, 20 (2008), 31-53.
- W. R. Derrick, P. van den Driessche. A disease transmision model in a nonconstant population. J. Math. Biol., 31 (1993), 495-512.
- A. d’Onofrio, P. Manfredi. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. J. Theor. Biol., 256 (2009), 473-478.
- J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond. Coupled contagion dynamics of fear and disease : mathematical and computational explorations. PLoS One, 3 (2008), e3955.
- S. Funk, E. Gilad, V. A. A. Jansen. Endemic disease, awareness, and local behavioural response. J. Theor. Biol., 264 (2010), 501-509.
- D. Gao, S. Ruan. An SIS patch model with variable transmission coefficients. Mathematical Biosciences, 232 (2011), 110-115.
- I. Z. Kiss, J. Cassell, M. Recker, P. L. Simon. The impact of information transmission on epidemic outbreaks. Math. Biosci., 225 (2010), 1-10.
- J.P. LaSalle, S. Lefschetz. Stability by Lyapunov’s Direct Method. Academic Press, New York, 1961.
- W. M. Liu, H. W. Hethcote, S. A. Levin. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol., 25 (1987), 359-380.
- W. M. Liu, S. A. Levin, Y. Iwasa. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol., 23 (1986), 187-204.
- P. Poletti, B. Caprile, M. Ajelli A. Pugliese, S. Merler. Spontaneous behavioural changes in response to epidemics. J. Theor. Biol., 260 (2009), 31-40.
- Z. Qiu, Z. Feng. Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull. Math. Biol., 72 (2010), 1-33.
- S. Ruan, W. Wang. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differential Equations, 188 (2003), 135-163.
- S. Ruan, W. Wang, S. Levin. The effect of global travel on the spread of SARS. Mathematical Biosciences and Engineering, 3 (2006), 205-218.
- L. Sattenspiel, D. A. Herring. Simulating the effect of quarantine on spread of the 1918-19 flue in central Canada. Bull. Math. Biol., 65 (2003), 1-26.
- C. Sun, W. Yang, J. Arino, K. Khan. Effect of media-induced social distancing on disease transmission in a two patch setting. Math. Biosci., 230 (2011), 87-95.
- M. M. Tanaka, J. Kumm, M. W. Feldman. Coevolution of pathogens and cultural practices : a new look at behavioral heterogeneity in epidemics. Theor. Popul. Biol., 62 (2002), 111-119.
- S. Tang, Y. Xiao, Y. Yang, Y. Zhou, J. Wu, Z. Ma. Community-based measures for mitigating the 2009 H1N1 pandemic in China. PLoS One. 5 (2010), e10911.
- P. van den Driessche, J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180 (2002), 29-48.
- W. Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences and Engineering, 3 (2006), 267-279.
- W. Wang, S. Ruan. Simulating the SARS outbreak in Beijing with limited data. J. Theor. Biol., 227 (2004), 369-379.
- D. Xiao, S. Ruan. Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci., 208 (2007), 419-429.