Role of Molecular Chaos in Granular Fluctuating Hydrodynamics
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 4, page 2-18
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topCostantini, G., and Puglisi, A.. "Role of Molecular Chaos in Granular Fluctuating Hydrodynamics." Mathematical Modelling of Natural Phenomena 6.4 (2011): 2-18. <http://eudml.org/doc/222326>.
@article{Costantini2011,
abstract = {We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse
velocity field during the cooling state of a homogeneous granular gas. We are interested
in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its
relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD,
deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random
process), where Molecular Chaos can be directly controlled. It is seen that the large time
decay of the fluctuation’s autocorrelation is always dictated by the viscosity coefficient
predicted by granular hydrodynamics, independently of the numerical scheme (MD or DSMC).
On the other side, the noise amplitude in Molecular Dynamics, which is known to
violate the equilibrium Fluctuation-Dissipation relation, is not always
accurately reproduced in a DSMC scheme. The agreement between the two models improves if
the probability of recollision (controlling Molecular Chaos) is reduced by increasing the
number of virtual particles per cells in the DSMC. This result suggests that DSMC is not
necessarily more efficient than MD, if the real number of particles is small
(~103 ± 104) and if one is interested in accurately reproduce
fluctuations. An open question remains about the small-times behavior of the
autocorrelation function in the DSMC, which in MD and in kinetic theory predictions is not
a straight exponential. },
author = {Costantini, G., Puglisi, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {granular gas; fluctuations; hydrodynamics; numerical simulations},
language = {eng},
month = {7},
number = {4},
pages = {2-18},
publisher = {EDP Sciences},
title = {Role of Molecular Chaos in Granular Fluctuating Hydrodynamics},
url = {http://eudml.org/doc/222326},
volume = {6},
year = {2011},
}
TY - JOUR
AU - Costantini, G.
AU - Puglisi, A.
TI - Role of Molecular Chaos in Granular Fluctuating Hydrodynamics
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/7//
PB - EDP Sciences
VL - 6
IS - 4
SP - 2
EP - 18
AB - We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse
velocity field during the cooling state of a homogeneous granular gas. We are interested
in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its
relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD,
deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random
process), where Molecular Chaos can be directly controlled. It is seen that the large time
decay of the fluctuation’s autocorrelation is always dictated by the viscosity coefficient
predicted by granular hydrodynamics, independently of the numerical scheme (MD or DSMC).
On the other side, the noise amplitude in Molecular Dynamics, which is known to
violate the equilibrium Fluctuation-Dissipation relation, is not always
accurately reproduced in a DSMC scheme. The agreement between the two models improves if
the probability of recollision (controlling Molecular Chaos) is reduced by increasing the
number of virtual particles per cells in the DSMC. This result suggests that DSMC is not
necessarily more efficient than MD, if the real number of particles is small
(~103 ± 104) and if one is interested in accurately reproduce
fluctuations. An open question remains about the small-times behavior of the
autocorrelation function in the DSMC, which in MD and in kinetic theory predictions is not
a straight exponential.
LA - eng
KW - granular gas; fluctuations; hydrodynamics; numerical simulations
UR - http://eudml.org/doc/222326
ER -
References
top- A. Barrat, V. Loreto, A. Puglisi. Temperature probes in binary granular gases. Physica A, 334 (2004), No. 3-4, 513–523.
- G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 1994.
- J. J. Brey, M. I. Garcia de Soria, P. Maynar. Breakdown of the fluctuation-dissipation relations in granular gases. Europhys. Lett., 84 (2008), No. 2, 24002.
- J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), No. 4, 4638–4653.
- J. J. Brey, P. Maynar, M. I. Garcia de Soria. Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E, 79 (2009), No. 5, 051305.
- J. J. Brey, M. J. Ruiz-Montero. Validity of the boltzmann equation to describe low-density granular systems. Phys. Rev. E, 69 (2004), No. 1, 011305.
- J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Instability and spatial correlations in a dilute granular gas. Phys. Fluids, 10 (1008), No. 11, 2976–2982.
- J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Steady-state representation of the homogeneous cooling state of a granular gas. Phys. Rev. E, 69 (2004), No. 051303–.
- J.J. Brey, M.I.G. de Soria, P. Maynar, M.J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70 (2004), No. 1, 011302.
- J.J. Brey, M.J. Ruiz-Montero. Average energy and fluctuations of a granular gas at the threshold of the clustering instability. Granular Matter, 10 (2007), No. 1, 53–59.
- G. Costantini, A. Puglisi. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study. Phys. Rev. E, 82 (2010), No. 1, 011305.
- G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Granular Brownian ratchet model. Phys. Rev. E, 75 (2007), No. 6, 061124–.
- G. Costantini, A. Puglisi, U. Marini Bettolo Marconi. Velocity fluctuations in a one dimensional inelastic Maxwell model. J. Stat. Mech., (2008), P08031.
- J. W. Dufty, J. J. Brey. Green-Kubo expressions for a granular gas. J. Stat. Phys., 109 (2002), No. 3-4, 433–448.
- J. Eggers. Sand as Maxwell’s demon. Phys. Rev. Lett., 83 (1999), No. 25, 5322–5325.
- K. Feitosa, N. Menon. Breakdown of energy equipartition in a 2d binary vibrated granular gas. Phys. Rev. Lett., 88 (2002), No. 19, 198301.
- A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, E. Clementi. Hydrodynamic fluctuations in a dilute gas under shear. Phys. Rev. A, 36 (1987), No. 9, 4348–4355.
- I. Goldhirsch. Scales and kinetics of granular flows. Chaos, 9 (1999), No. 3, 659–672.
- I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622.
- R. Kubo, M. Toda, N. Hashitsume. Statistical physics II: Nonequilibrium stastical mechanics. Springer, Berlin, 1991.
- L. D. Landau, E. M. Lifchitz. Physique Statistique. Éditions MIR, Moscow, 1967.
- J. F. Lutsko. Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett., 77 (1996), No. 11, 2225–2228.
- J. F. Lutsko. A model for the atomic-scale structure of the homogeneous cooling state of granular fluids. Phys. Rev. E, 63 (2001), No. 6, 061211.
- M. Mansour Malek, A. L. Garcia, G. C. Lie, E. Clementi. Fluctuating hydrodynamics in a dilute gas. Phys. Rev. Lett., 58 (1987), No. 9, 874–877.
- U. Marini Bettolo Marconi, A. Puglisi. Mean-field model of free-cooling inelastic mixtures. Phys. Rev. E, 65 (2002), No. 5, 051305.
- U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani. Fluctuation-dissipation: Response theory in statistical physics. Phys. Rep., 461 (2008), No. 4-6, 111–195.
- P. Maynar, M. I. G. de Soria, E. Trizac. Fluctuating hydrodynamics for driven granular gases. Eur. Phys. J. Special Topics, 170 (2009), No. 1, 123–139.
- R. Pagnani, U. Marini Bettolo Marconi, A. Puglisi. Driven low density granular mixtures. Phys. Rev. E, 66 (2002), No. 5, 051304.
- T. Pöschel, N. Brilliantov, editors. Granular Gas Dynamics. Lecture Notes in Physics 624. Springer, Berlin, 2003.
- T. Pöschel, S. Luding, editors.Granular Gases. Lecture Notes in Physics 564. Springer, Berlin, 2001.
- A. Puglisi, A. Baldassarri, V. Loreto. Fluctuation-dissipation relations in driven granular gases. Physical Review E, 66 (2002), No. 6, 061305.
- A. Puglisi, A. Baldassarri, A. Vulpiani. Violations of the Einstein relation in granular fluids: the role of correlations. J. Stat. Mech., (2007), P08016.
- A. Sarracino, D. Villamaina, G. Costantini, A. Puglisi. Granular brownian motion. J. Stat. Mech., (2010) P04013.
- A. Sarracino, D. Villamaina, G. Gradenigo, A. Puglisi. Irreversible dynamics of a massive intruder in dense granular fluids. Europhys. Lett., 92 (2010), No. 3, 34001.
- T. C. P. van Noije, M. H. Ernst, R. Brito, J. A. G. Orza. Mesoscopic theory of granular fluids. Phys. Rev. Lett., 79 (1007), No. 3, 411–414.
- D. Villamaina, A. Puglisi, A. Vulpiani. The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion. J. Stat. Mech., (2008), L10001.
- P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51 (2006), No. 3, 377–387.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.