The search session has expired. Please query the service again.
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...
This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...
We consider the Cauchy problem for the 3D density-dependent incompressible flow of liquid crystals with vacuum, and provide a regularity criterion in terms of u and ∇d in the Besov spaces of negative order. This improves a recent result of Fan-Li [Comm. Math. Sci. 12 (2014), 1185-1197].
We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height . In the quenched setting, we also sharply estimate the distribution of the walk at time .
We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
We prove the central limit theorem for symmetric diffusion processes with non-zero drift in a random environment. The case of zero drift has been investigated in e.g. [18], [7]. In addition we show that the covariance matrix of the limiting Gaussian random vector corresponding to the diffusion with drift converges, as the drift vanishes, to the covariance of the homogenized diffusion with zero drift.
There is enough evidence to re-examine disclinations and hedgehogs, the singularities often observed in nematic liquid crystals, in the light of a new theory that allows for local changes in the degree of orientation.
We study the textures of smectic-A liquid crystals consisting in curved, but stricdy equidistant lamellae. Assuming translational symmetry, we can generate them from a single curve. The free energy is a non-trivial functional of it. We learn how to derive the equilibrium equation for this curve, when the texture is confined between two parallel plates, which exert a weak anchoring on the orientation of the lamellae, but do not interfere direcdy with their position. Finally, we describe an instability...
Currently displaying 1 –
20 of
55