A Reduced Basis Enrichment for the eXtended Finite Element Method

E. Chahine; P. Laborde; Y. Renard

Mathematical Modelling of Natural Phenomena (2009)

  • Volume: 4, Issue: 1, page 88-105
  • ISSN: 0973-5348

Abstract

top
This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies.

How to cite

top

Chahine, E., Laborde, P., and Renard, Y.. "A Reduced Basis Enrichment for the eXtended Finite Element Method." Mathematical Modelling of Natural Phenomena 4.1 (2009): 88-105. <http://eudml.org/doc/222353>.

@article{Chahine2009,
abstract = { This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies.},
author = {Chahine, E., Laborde, P., Renard, Y.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {fracture; finite element method; Xfem; reduced basis; error estimates; error estimates},
language = {eng},
month = {1},
number = {1},
pages = {88-105},
publisher = {EDP Sciences},
title = {A Reduced Basis Enrichment for the eXtended Finite Element Method},
url = {http://eudml.org/doc/222353},
volume = {4},
year = {2009},
}

TY - JOUR
AU - Chahine, E.
AU - Laborde, P.
AU - Renard, Y.
TI - A Reduced Basis Enrichment for the eXtended Finite Element Method
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/1//
PB - EDP Sciences
VL - 4
IS - 1
SP - 88
EP - 105
AB - This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies.
LA - eng
KW - fracture; finite element method; Xfem; reduced basis; error estimates; error estimates
UR - http://eudml.org/doc/222353
ER -

References

top
  1. R.A. Adams. Sobolev Spaces. Academic Press, 1975.  
  2. E. Béchet, H. Minnebo, N. Moës, B. Burgardt. Improved implementation and robustness study of the x-fem for stress analysis around cracks. Int. J. Numer. Meth. Engng., 64 (2005), 1033–1056.  
  3. T. Belytschko, N. Moës, S. Usui, C. Parimi. Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Engng., 50 (2001), 993–1013.  
  4. E. Chahine. Etude mathématique et numérique de méthodes d'éléments finis étendues pour le calcul en domaines fissurés. Thèse de Doctorat de l'INSA de Toulouse, 2008.  
  5. E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a cut-off function. To appear in Int. J. Numer. Meth. Engng.  
  6. E. Chahine, P. Laborde, Y. Renard. Spider Xfem: an extended finite element variant for partially unknown crack-tip displacement. To appear in Europ. J. of Comp. Mech.  
  7. E. Chahine, P. Laborde, Y. Renard. The extended finite element method with an integral matching condition. Submitted.  
  8. P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and its Applications No 4, North Holland, 1978.  
  9. H. Ben Dhia. Multiscale mechanical problems : the Arlequin method. C. R. Acad. Sci., série I, Paris, 326 (1998), 899–904.  
  10. M. Dupeux. Mesure des énergies de rupture interfaciale: problématique et exemples de résultats d'essais de gonflement-d'écollement. Mécanique et industrie, 5 (2004), 441–450.  
  11. A. Ern, J.-L. Guermond. Éléments finis: théorie, applications, mise en œuvre. Mathématiques et Applications 36, SMAI, Springer-Verlag, 2002.  
  12. R. Glowinski, J. He, J. Rappaz, J. Wagner. Approximation of multi-scale elliptic problems using patches of elements. C. R. Math. Acad. Sci., Paris, 337 (2003), 679–684.  
  13. P. Grisvard. Problèmes aux limites dans les polygones - mode d'emploi. EDF Bull. Dirctions Etudes Rech. Sér. C. Math. Inform. 1, MR 87g:35073 (1986), 21–59.  
  14. P. Grisvard. Singularities in boundary value problems. Masson, 1992.  
  15. D.B.P. Huynh, A.T. Patera. Reduced basis approximation and a posteriori error estimation for stress intensity factors. Int. J. Numer. Meth. Engng. 72 (2007), 1219–1259.  
  16. P. Laborde, Y. Renard, J. Pommier, M. Salaün. High order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng., 64 (2005), 354–381.  
  17. J. Lemaitre, J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, 1994.  
  18. J.L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications, volume 1. Dunod, 1968.  
  19. Y. Maday, E.M. Rønquist. A reduced-basis element method. J. Sci. Comput., 17 (2002), (1-4), 447–459.  
  20. J.M. Melenk, I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meths. Appl. Mech. Engrg., 139 (1996), 289–314.  
  21. N. Moës, T. Belytschko. X-fem: Nouvelles frontières pour les éléments finis. Revue européenne des éléments finis, 11 (1999), 131–150.  
  22. N. Moës, J. Dolbow, T. Belytschko. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng., 46 (1999), 131–150.  
  23. A.K. Noor, J.M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA Journal, 18 (2002), No. 4, 455–462.  
  24. Y. Renard, J. Pommier. Getfem++. An open source generic C++ library for finite element methods, .  URIhttp://home.gna.org/getfem
  25. G. Strang, G. Fix. An Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, 1973.  
  26. T. Strouboulis, I. Babuska, K. Copps. The design and analysis of the generalized finite element method. Comput. Meths. Appl. Mech. Engrg., 181 (2000), 43–69.  
  27. T. Strouboulis, I. Babuska, K. Copps. The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. Meth. Engng., 47 (2000), 1401–1417.  
  28. N. Sukumar, Z. Y. Huang, J.-H. Prévost, Z. Suo. Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Meth. Engng., 59 (2004), 1075–1102.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.