# Multi-scale Modelling for Threshold Dependent Differentiation

A. Q. Cai; Y. Peng; J. Wells; X. Dai; Q. Nie

Mathematical Modelling of Natural Phenomena (2009)

- Volume: 4, Issue: 4, page 103-117
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topCai, A. Q., et al. "Multi-scale Modelling for Threshold Dependent Differentiation." Mathematical Modelling of Natural Phenomena 4.4 (2009): 103-117. <http://eudml.org/doc/222372>.

@article{Cai2009,

abstract = {
The maintenance of a stable stem cell
population in the epidermis is important for robust regeneration
of the stratified epithelium. The population size is usually
regulated by cell secreted extracellular signalling molecules as
well as intracellular molecules. In this paper, a simple model
incorporating both levels of regulation is developed to examine
the balance between growth and differentiation for the stem cell
population. In particular, the dynamics of a known differentiation
regulator c-Myc, its threshold dependent differentiation, and
feedback regulation on maintaining a stable stem cell population
are investigated.
},

author = {Cai, A. Q., Peng, Y., Wells, J., Dai, X., Nie, Q.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {cell division; cell differentiation; stem cells; threshold; cell
population balance model; c-Myc; epidermal development; cell population balance model},

language = {eng},

month = {7},

number = {4},

pages = {103-117},

publisher = {EDP Sciences},

title = {Multi-scale Modelling for Threshold Dependent Differentiation},

url = {http://eudml.org/doc/222372},

volume = {4},

year = {2009},

}

TY - JOUR

AU - Cai, A. Q.

AU - Peng, Y.

AU - Wells, J.

AU - Dai, X.

AU - Nie, Q.

TI - Multi-scale Modelling for Threshold Dependent Differentiation

JO - Mathematical Modelling of Natural Phenomena

DA - 2009/7//

PB - EDP Sciences

VL - 4

IS - 4

SP - 103

EP - 117

AB -
The maintenance of a stable stem cell
population in the epidermis is important for robust regeneration
of the stratified epithelium. The population size is usually
regulated by cell secreted extracellular signalling molecules as
well as intracellular molecules. In this paper, a simple model
incorporating both levels of regulation is developed to examine
the balance between growth and differentiation for the stem cell
population. In particular, the dynamics of a known differentiation
regulator c-Myc, its threshold dependent differentiation, and
feedback regulation on maintaining a stable stem cell population
are investigated.

LA - eng

KW - cell division; cell differentiation; stem cells; threshold; cell
population balance model; c-Myc; epidermal development; cell population balance model

UR - http://eudml.org/doc/222372

ER -

## References

top- M. Abercrombie. The crawling movement of metazoan cells. Proc. R. Soc. Lond. B. Biol. Sci., 207 (1980), No. 1167, 129–147.
- I. Arnold, F. M. Watt. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol., 11 (2001), No. 8, 558–568.
- B. Basse, B. C. Baguley, E. S. Marshall, W. R. Joseph, B. van Brunt, G. C. Wake, D. J. N. Wall. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol., 47 (2003), No. 4, 295–312. Zbl1050.92028
- S. Bernard, L. Pujo-Menjouet, M. C. Mackey. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J., 84 (2003), 3414–3424.
- B. van Brunt, G. C. Wake, H. K. Kim. On a singular Sturm-Liouville problem involving an advanced functional differential equation. European J. Appl. Math., 12 (2001), 625–644. Zbl1017.34068
- A. Q. Cai, K. A. Landman, B. D. Hughes, C. M. Witt. T cell development in the thymus: From periodic seeding to constant output. J. Theor. Biol., 249 (2007), No. 2, 384–394, 2007.
- E. Clayton, D. P. Doupé, A. M. Klein, D. J. Winton, B. D. Simons, P. H. Jones. A single type of progenitor cell maintains normal epidermis. Nature, 446 (2007), 185–189.
- E. Fuchs, S. Raghavan. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet., 3 (2002), 199–209.
- A. B. Glick, A. B. Kulkarni, T. Tennenbaum, H. Hennings, K. C. Flanders, M. O'Reily, M. B. Sporn, S. Karlsson, S. H. Yuspa. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA, 90 (1993), 6076–6080.
- M. A. Hjortsø. Population balances in biomedical engineering: Segregation through the distribution of the cell states. McGraw-Hill, 2006.
- M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, S. J. Chapman. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. USA, 104 (2008), No. 10, 4008–4013.
- W.-C. Lo, C.-S. Chou, K. K. Gokoffski, F. Y.-M. Wan, A. D. Lander, A. L. Calof, Q. Nie. Feedback regulation in multistage cell lineages. Math. Biosci. Eng., 6 (2008), No. 1, 59–82. Zbl1159.92013
- T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model., 4 (2007), No. 26.
- M. Mangel, M. B. Bonsall. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability. PLoS one, 3 (2008), No. 2, e1591.
- N. V. Mantzaris. Single-cell gene-switching networks and heterogeneous cell population phenotypes. Comput. Chem. Eng., 29 (2005), 631–643.
- J. D. Murray. Mathematical biology, Vol. 1, New York: Springer, 2002. Zbl1006.92001
- M. Nair, A. Teng, V. Bilanchone, A. Agrawal, B. Li, X. Dai. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-Myc transcription. J. Cell. Biol., 173 (2006), No. 2, 253–264.
- S. Pelengaris, T. Littlewood, M. Khan, G. Elia, G. Evan. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell, 3 (1999), No. 5, 565–577.
- L. F. Shampine. Solving hyperbolic PDEs in Matlab. Appl. Num. Anal. Comp. Math., 2 (2005), No. 3, 346–358. Zbl1085.65514
- I. P. Tomlinson, W. F. Bodmer. Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proc. Nat. Acad. Sci. USA, 92 (1995), 11130–11134.
- R. L. Waikel, Y. Kawachi, P. A. Waikel, X.-J. Wang, D. R. Roop. Deregulated expression of c-Myc depletes epidermal stem cells. Nat. Genet., 28 (2001), No. 2, 165–168.
- G. Wang. Estimation of the proliferation and maturation functions in a physiologically structured model of thymocyte development. J. Math. Biol., 54 (2007), 761–786. Zbl1145.92020
- F. M. Watt, M. Frye, S. A. Benitah. Myc in mammalian epidermis: how can an oncogene stimulate differentiation?. Nat. Rev. Cancer, 8 (2008), 234–242.
- J. J. Willie Jr, M. R. Pittelkow, G. D. Shipley, R. E. Scott. Integrated control of growth and differentiation of normal human prokeratinocytes cultures in serum-free medium: clonal analyses, growth kinetics and cell cycle studies. J. Cell. Physiol, 121 (1984), 31–44.
- A. Wilson, M. J. Murphy, T. Oskarsson, K. Kaloulis, M. D. Bettess, G. M. Oser, A.-C. Pasche, C. Knabenhans, H. R. MacDonald, A. Trumpp. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes. Dev, 18 (2004), 2747–2763.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.